Global L2 superconvergence of the tetrahedral quadratic finite element

被引:0
作者
Yang, Peng [1 ]
Li, Yonghai [1 ]
Wang, Xiang [1 ,2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Beijing Normal Univ, BNU UIC Res Ctr Math, Zhuhai 519087, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
L-2; superconvergence; Finite element; Tetrahedral mesh; Simplified weak estimate of the second type; Four-element-based uniform; POSTERIORI ERROR ESTIMATORS; RECOVERY; GRADIENT; POINTS;
D O I
10.1016/j.camwa.2023.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides the global L-2 superconvergence of the tetrahedral quadratic finite element parallel to u(h) - u(I)parallel to(0) <= ch(4)parallel to u parallel to(4), where u(h) and u(I) are the finite element approximation and the quadratic Lagrange interpolation of the exact solution u respectively. The standard analysis of the global L-2 superconvergence is combined with the weak estimate of the second type (WE2). However, the WE2 of the tetrahedral quadratic finite element has kept absent for a rather long time. To this end, we define the four-element-based uniformtetrahedral mesh, and then present the simplified weak estimate of the second type (SWE2), which simplifies the result of the WE2 and can also derive the global L-2 superconvergence. For the completeness, the proof of the WE2 can be found in the appendix. Finally, this supercloseness will be used to construct a post-processing that increases the order of approximation to the exact solution in L-2 norm. Numerical experiments are provided to illustrate our theoretical results.
引用
收藏
页码:104 / 123
页数:20
相关论文
共 35 条
[1]  
ANDREEV AB, 1984, DOKL BOLG AKAD NAUK, V37, P1179
[2]  
ANDREEV AB, 1984, DOKL BOLG AKAD NAUK, V37, P293
[3]  
[Anonymous], 1989, Superconvergence Theory of the Finite Element Methods
[4]  
Babuska I., 1996, NUMER METHODS PDES, V12, P347
[5]   Superconvergence in the generalized finite element method [J].
Babuska, Ivo ;
Banerjee, Uday ;
Osborn, John E. .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :353-395
[6]   Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence [J].
Bank, RE ;
Xu, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) :2294-2312
[7]  
Brandts J, 2005, J COMPUT MATH, V23, P27
[8]  
Brandts J., 2000, FINITE ELEMENT METHO
[9]  
Brandts J.H., 2001, GAKUTO International Series Mathematics Science Application, V15, P22
[10]  
Chen C., 1995, High Accuracy Theory of Finite Element Methods