Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression

被引:4
作者
Laome, Lilis [1 ,2 ]
Budiantara, I. Nyoman [1 ]
Ratnasari, Vita [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Halu Oleo, Fac Math & Nat Sci, Dept Stat, Kendari 93132, Indonesia
关键词
GWNR; linear estimator; mixed estimator; spatial data; unbiased;
D O I
10.3390/math11010152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geographically Weighted Regression (GWR) is the development of multiple linear regression models used in spatial data. The assumption of spatial heterogeneity results in each location having different characteristics and allows the relationships between the response variable and each predictor variable to be unknown, hence nonparametric regression becomes one of the alternatives that can be used. In addition, regression functions are not always the same between predictor variables. This study aims to use the Geographically Weighted Nonparametric Regression (GWNR) model with a mixed estimator of truncated spline and Fourier series. Both estimators are expected to overcome unknown data patterns in spatial data. The mixed GWNR model estimator is then determined using the Weighted Maximum Likelihood Estimator (WMLE) technique. The estimator's characteristics are then determined. The results of the study found that the estimator of the mixed GWNR model is an estimator that is not biased and linear to the response variable y.
引用
收藏
页数:13
相关论文
共 20 条
[1]   Warranty Claim Forecasting Based On Weighted Maximum Likelihood Estimation [J].
Akbarov, Artur ;
Wu, Shaomin .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2012, 28 (06) :663-669
[2]  
BPS, 2021, PROV SUL BAR DAL ANG
[3]  
BPS, 2021, PROV SUL TENGG DAL A
[4]  
BPS, 2021, PROV SUL UT DAL ANGK
[5]  
BPS, 2021, PROV GOR DAL ANGK 20
[6]  
BPS Provinsi Sulawesi Selatan, 2021, Provinsi Sulawesi Selatan dalam Angka 2021
[7]  
Budiantara I.N., 2015, APPL MATH SCI, V9, P6083, DOI [10.12988/ams.2015.58517, DOI 10.12988/AMS.2015.58517]
[8]  
Cheng M., 2010, J STAT PLAN INFERENC, V140, P1389, DOI [10.1016/j.jspi.2009.09.026, DOI 10.1016/j.jspi.2009.09.026, DOI 10.1016/J.JSPI.2009.09.026]
[9]  
Draper N.R., 1998, Applied Regression Analysis, V3rd
[10]   Estimating land value uplift around light rail transit stations in Greater Kuala Lumpur: An empirical study based on geographically weighted regression (GWR) [J].
Dziauddin, Mohd Faris .
RESEARCH IN TRANSPORTATION ECONOMICS, 2019, 74 :10-20