A guide to multi-omics data collection and integration for translational medicine

被引:0
作者
Athieniti, Efi [1 ]
Spyrou, George M. [1 ]
机构
[1] Cyprus Inst Neurol & Genet, Dept Bioinformat, 6 Iroon Ave, CY-2371 Nicosia, Cyprus
关键词
Multi-omics; Integration; Translational medicine; Challenges;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The emerging high-throughput technologies have led to the shift in the design of translational medicine projects towards collecting multi-omics patient samples and, consequently, their integrated analysis. However, the complexity of integrating these datasets has triggered new questions regarding the appropriateness of the available computational methods. Currently, there is no clear consensus on the best combination of omics to include and the data integration methodologies required for their analysis. This article aims to guide the design of multi-omics studies in the field of translational medicine regarding the types of omics and the integration method to choose. We review articles that perform the integration of multiple omics measurements from patient samples. We identify five objectives in translational medicine applications: (i) detect disease-associated molecular patterns, (ii) subtype identification, (iii) diagnosis/prognosis, (iv) drug response prediction, and (v) understand regulatory processes. We describe common trends in the selection of omic types combined for different objectives and diseases. To guide the choice of data integration tools, we group them into the scientific objectives they aim to address. We describe the main computational methods adopted to achieve these objectives and present examples of tools. We compare tools based on how they deal with the computational challenges of data integration and comment on how they perform against predefined objective-specific evaluation criteria. Finally, we discuss examples of tools for downstream analysis and further extraction of novel insights from multi-omics datasets. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:134 / 149
页数:16
相关论文
共 85 条
[1]   Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids [J].
Alcala, N. ;
Leblay, N. ;
Gabriel, A. A. G. ;
Mangiante, L. ;
Hervas, D. ;
Giffon, T. ;
Sertier, A. S. ;
Ferrari, A. ;
Derks, J. ;
Ghantous, A. ;
Delhomme, T. M. ;
Chabrier, A. ;
Cuenin, C. ;
Abedi-Ardekani, B. ;
Boland, A. ;
Olaso, R. ;
Meyer, V ;
Altmuller, J. ;
Le Calvez-Kelm, F. ;
Durand, G. ;
Voegele, C. ;
Boyault, S. ;
Moonen, L. ;
Lemaitre, N. ;
Lorimier, P. ;
Toffart, A. C. ;
Soltermann, A. ;
Clement, J. H. ;
Saenger, J. ;
Field, J. K. ;
Brevet, M. ;
Blanc-Fournier, C. ;
Galateau-Salle, F. ;
Le Stang, N. ;
Russell, P. A. ;
Wright, G. ;
Sozzi, G. ;
Pastorino, U. ;
Lacomme, S. ;
Vignaud, J. M. ;
Hofman, V ;
Hofman, P. ;
Brustugun, O. T. ;
Lund-Iversen, M. ;
de Montpreville, V. Thomas ;
Muscarella, L. A. ;
Graziano, P. ;
Popper, H. ;
Stojsic, J. ;
Deleuze, J. F. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]  
Argelaguet R., 2017, BIORXIV, DOI [10.1101/217554, DOI 10.1101/217554]
[3]   Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines [J].
Baxi, Emily G. ;
Thompson, Terri ;
Li, Jonathan ;
Kaye, Julia A. ;
Lim, Ryan G. ;
Wu, Jie ;
Ramamoorthy, Divya ;
Lima, Leandro ;
Vaibhav, Vineet ;
Matlock, Andrea ;
Frank, Aaron ;
Coyne, Alyssa N. ;
Landin, Barry ;
Ornelas, Loren ;
Mosmiller, Elizabeth ;
Thrower, Sara ;
Farr, S. Michelle ;
Panther, Lindsey ;
Gomez, Emilda ;
Galvez, Erick ;
Perez, Daniel ;
Meepe, Imara ;
Lei, Susan ;
Mandefro, Berhan ;
Trost, Hannah ;
Pinedo, Louis ;
Banuelos, Maria G. ;
Liu, Chunyan ;
Moran, Ruby ;
Garcia, Veronica ;
Workman, Michael ;
Ho, Richie ;
Wyman, Stacia ;
Roggenbuck, Jennifer ;
Harms, Matthew B. ;
Stocksdale, Jennifer ;
Miramontes, Ricardo ;
Wang, Keona ;
Venkatraman, Vidya ;
Holewenski, Ronald ;
Sundararaman, Niveda ;
Pandey, Rakhi ;
Manalo, Danica-Mae ;
Donde, Aneesh ;
Huynh, Nhan ;
Adam, Miriam ;
Wassie, Brook T. ;
Vertudes, Edward ;
Amirani, Naufa ;
Raja, Krishna .
NATURE NEUROSCIENCE, 2022, 25 (02) :226-+
[4]   Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer [J].
Cantini, Laura ;
Zakeri, Pooya ;
Hernandez, Celine ;
Naldi, Aurelien ;
Thieffry, Denis ;
Remy, Elisabeth ;
Baudot, Anais .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data [J].
Canzler, Sebastian ;
Hackermuller, Jorg .
BMC BIOINFORMATICS, 2020, 21 (01)
[6]   Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems [J].
Cao, Kim-Anh Le ;
Boitard, Simon ;
Besse, Philippe .
BMC BIOINFORMATICS, 2011, 12
[7]   Integrative clustering of multi-level 'omic data based on non-negative matrix factorization algorithm [J].
Chalise, Prabhakar ;
Fridley, Brooke L. .
PLOS ONE, 2017, 12 (05)
[8]   Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data [J].
Chen, Shuonan ;
Mar, Jessica C. .
BMC BIOINFORMATICS, 2018, 19
[9]   The Personal Genome Project-UK, an open access resource of human multi-omics data [J].
Chervova, Olga ;
Conde, Lucia ;
Guerra-Assuncao, Jose Afonso ;
Moghul, Ismail ;
Webster, Amy P. ;
Berner, Alison ;
Cadieux, Elizabeth Larose ;
Tian, Yuan ;
Voloshin, Vitaly ;
Jesus, Tiago F. ;
Hamoudi, Rifat ;
Herrero, Javier ;
Beck, Stephan .
SCIENTIFIC DATA, 2019, 6 (1)
[10]   The Application of Bayesian Methods in Cancer Prognosis and Prediction [J].
Chu, Jiadong ;
Sun, N. A. ;
Hu, Wei ;
Chen, Xuanli ;
Yi, Nengjun ;
Shen, Yueping .
CANCER GENOMICS & PROTEOMICS, 2022, 19 (01) :1-11