Map-enhanced generative adversarial trajectory prediction method for automated vehicles

被引:23
作者
Guo, Hongyan [1 ,2 ]
Meng, Qingyu [1 ,2 ]
Zhao, Xiaoming [1 ,2 ]
Liu, Jun [1 ,2 ]
Cao, Dongpu [3 ]
Chen, Hong [2 ,4 ]
机构
[1] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130025, Peoples R China
[2] Jilin Univ, Dept Control Sci & Engn, Changchun 130025, Peoples R China
[3] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100000, Peoples R China
[4] Tongji Univ, Clean Energy Automot Engn Ctr, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Vehicle trajectory prediction; Generative adversarial network; HD map; Graph convolution; Map-enhanced; NETWORK;
D O I
10.1016/j.ins.2022.12.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory prediction in dynamic and highly interactive scenarios is a critical method for achieving advanced autonomous driving. Maximizing the guidance and constraints pro-vided by high-definition (HD) maps can help improve prediction performance across the board. In this paper, we propose a map-enhanced generative adversarial network (ME -GAN) for vehicle trajectory prediction. The vehicle motion features, map constraints, traffic flow density, and vehicle interactions are comprehensively considered in the generator, and a graph query mechanism is proposed to realize the reuse of the global map. In the dis-criminator, in addition to considering the authenticity of a generated trajectory and whether it is consistent with the historical trajectory, additional map information is intro-duced to establish a matching model between the generated trajectory and the current map. Experiments based on the Argoverse and nuScenes dataset are subsequently per -formed. The experimental results show that our prediction method outperforms state-of -the-art prediction systems, namely, TNT, PRIME and P2T. The strong coupling of the HD map significantly improves the reasonableness of the predicted trajectory.CO 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:1033 / 1049
页数:17
相关论文
共 38 条
[1]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[2]  
Chai Yuning., 2020, CORL, P86
[3]   Argoverse: 3D Tracking and Forecasting with Rich Maps [J].
Chang, Ming-Fang ;
Lambert, John ;
Sangkloy, Patsorn ;
Singh, Jagjeet ;
Bak, Slawomir ;
Hartnett, Andrew ;
Wang, De ;
Carr, Peter ;
Lucey, Simon ;
Ramanan, Deva ;
Hays, James .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8740-8749
[4]  
Cui HG, 2019, IEEE INT CONF ROBOT, P2090, DOI [10.1109/icra.2019.8793868, 10.1109/ICRA.2019.8793868]
[5]   A Flexible and Explainable Vehicle Motion Prediction and Inference Framework Combining Semi-Supervised AOG and ST-LSTM [J].
Dai, Shengzhe ;
Li, Zhiheng ;
Li, Li ;
Zheng, Nanning ;
Wang, Shuofeng .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) :840-860
[6]   A Review of HMM-Based Approaches of Driving Behaviors Recognition and Prediction [J].
Deng, Qi ;
Soffker, Dirk .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (01) :21-31
[7]  
Deo N, 2021, Arxiv, DOI [arXiv:2001.00735, DOI 10.48550/ARXIV.2001.00735]
[8]  
Deo Nachiket., 2022, CORL PMLR, P203
[9]   Probabilistic Crowd GAN: Multimodal Pedestrian Trajectory Prediction Using a Graph Vehicle-Pedestrian Attention Network [J].
Eiffert, Stuart ;
Li, Kunming ;
Shan, Mao ;
Worrall, Stewart ;
Sukkarieh, Salah ;
Nebot, Eduardo .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :5026-5033
[10]   TPNet: Trajectory Proposal Network for Motion Prediction [J].
Fang, Liangji ;
Jiang, Qinhong ;
Shi, Jianping ;
Zhou, Bolei .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6796-6805