Measuring drug similarity using drug-drug interactions

被引:1
作者
Lv, Ji [1 ,2 ]
Liu, Guixia [1 ,2 ]
Ju, Yuan [3 ]
Huang, Houhou [4 ]
Sun, Ying [5 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun, Peoples R China
[3] Sichuan Univ, Sichuan Univ Lib, Chengdu, Peoples R China
[4] Jilin Univ, Coll Chem, Changchun, Peoples R China
[5] First Hosp Jilin Univ, Dept Resp Med, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
drug similarity; drug-drug interactions; drug combinations; synergy effect; clustering; semi-supervised learning; ANTIBIOTICS; MECHANISMS; PREDICTION;
D O I
10.1002/qub2.38
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Combination therapy is a promising approach to address the challenge of antimicrobial resistance, and computational models have been proposed for predicting drug-drug interactions. Most existing models rely on drug similarity measures based on characteristics such as chemical structure and the mechanism of action. In this study, we focus on the network structure itself and propose a drug similarity measure based on drug-drug interaction networks. We explore the potential applications of this measure by combining it with unsupervised learning and semi-supervised learning approaches. In unsupervised learning, drugs can be grouped based on their interactions, leading to almost monochromatic group-group interactions. In addition, drugs within the same group tend to have similar mechanisms of action (MoA). In semi-supervised learning, the similarity measure can be utilized to construct affinity matrices, enabling the prediction of unknown drug-drug interactions. Our method exceeds existing approaches in terms of performance. Overall, our experiments demonstrate the effectiveness and practicability of the proposed similarity measure. On the one hand, when combined with clustering algorithms, it can be used for functional annotation of compounds with unknown MoA. On the other hand, when combined with semi-supervised graph learning, it enables the prediction of unknown drug-drug interactions.
引用
收藏
页码:164 / 172
页数:9
相关论文
共 35 条
[1]   Application of network link prediction in drug discovery [J].
Abbas, Khushnood ;
Abbasi, Alireza ;
Dong, Shi ;
Niu, Ling ;
Yu, Laihang ;
Chen, Bolun ;
Cai, Shi-Min ;
Hasan, Qambar .
BMC BIOINFORMATICS, 2021, 22 (01)
[2]   The toxicity of poisons applied jointly [J].
Bliss, CI .
ANNALS OF APPLIED BIOLOGY, 1939, 26 (03) :585-615
[3]   Structural basis for aminoglycoside inhibition of bacterial ribosome recycling [J].
Borovinskaya, Maria A. ;
Pai, Raj D. ;
Zhang, Wen ;
Schuwirth, Barbara S. ;
Holton, James M. ;
Hirokawa, Go ;
Kaji, Hideko ;
Kaji, Akira ;
Cate, Jamie H. Doudna .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2007, 14 (08) :727-732
[4]   Species-specific activity of antibacterial drug combinations [J].
Brochado, Ana Rita ;
Telzerow, Anja ;
Bobonis, Jacob ;
Banzhaf, Manuel ;
Mateus, Andre ;
Selkrig, Joel ;
Huth, Emily ;
Bassler, Stefan ;
Beas, Jordi Zamarreno ;
Zietek, Matylda ;
Ng, Natalie ;
Foerster, Sunniva ;
Ezraty, Benjamin ;
Py, Beatrice ;
Barras, Frederic ;
Savitski, Mikhail M. ;
Bork, Peer ;
Goettig, Stephan ;
Typas, Athanasios .
NATURE, 2018, 559 (7713) :259-+
[5]   Chemogenomics and orthology-based design of antibiotic combination therapies [J].
Chandrasekaran, Sriram ;
Cokol-Cakmak, Melike ;
Sahin, Nil ;
Yilancioglu, Kaan ;
Kazan, Hilal ;
Collins, James J. ;
Cokol, Murat .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (05)
[6]   NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning [J].
Chen, Xing ;
Ren, Biao ;
Chen, Ming ;
Wang, Quanxin ;
Zhang, Lixin ;
Yan, Guiying .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (07)
[7]   iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals [J].
Cheng, Xiang ;
Zhao, Shu-Guang ;
Xiao, Xuan ;
Chou, Kuo-Chen .
BIOINFORMATICS, 2017, 33 (03) :341-346
[8]   Systematic exploration of synergistic drug pairs [J].
Cokol, Murat ;
Chua, Hon Nian ;
Tasan, Murat ;
Mutlu, Beste ;
Weinstein, Zohar B. ;
Suzuki, Yo ;
Nergiz, Mehmet E. ;
Costanzo, Michael ;
Baryshnikova, Anastasia ;
Giaever, Guri ;
Nislow, Corey ;
Myers, Chad L. ;
Andrews, Brenda J. ;
Boone, Charles ;
Roth, Frederick P. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[9]   A multimodal deep learning framework for predicting drug-drug interaction events [J].
Deng, Yifan ;
Xu, Xinran ;
Qiu, Yang ;
Xia, Jingbo ;
Zhang, Wen ;
Liu, Shichao .
BIOINFORMATICS, 2020, 36 (15) :4316-4322
[10]   Incorporating Multisource Knowledge To Predict Drug Synergy Based on Graph Co-regularization [J].
Ding, Pingjian ;
Shen, Cong ;
Lai, Zihan ;
Liang, Cheng ;
Li, Gnanghui ;
Luo, Jiawei .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (01) :37-46