RL-GCN: Traffic flow prediction based on graph convolution and reinforcement for smart cities

被引:8
|
作者
Xing, Hang [1 ]
Chen, An [2 ]
Zhang, Xuan [3 ]
机构
[1] South China Agr Univ, Coll Engn, Guangzhou 510642, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Dept Expt Teaching, Guangzhou 510006, Peoples R China
[3] Univ Penn, Dept Comp Sci, Philadelphia, PA 19104 USA
关键词
Image synthesis; LSTM; Reinforcement learning; Traffic flow; Prediction; Smart cities; NETWORK;
D O I
10.1016/j.displa.2023.102513
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The traffic flow problem has become essential in urban planning and management in today's increasingly urbanized world. Traditional traffic flow prediction models cannot fully consider urban traffic networks' complex and dynamic characteristics. To this end, this paper proposes a traffic flow prediction method for smart cities (RL-GCN) based on graph convolution, LSTM network and reinforcement learning, aiming to solve the problem of urban traffic flow prediction. Firstly, we use the graph convolutional neural network to process the urban traffic network data features, then use the LSTM network model to learn the temporal information, and then combine the reinforcement learning algorithm to develop the optimal traffic control strategy based on which the future traffic flow is predicted. Our experiments on several datasets show that the model developed in this paper has outstanding performance for urban traffic flow prediction. Compared with the traditional traffic flow prediction methods, the method in this paper has significantly improved prediction accuracy. Our research can provide valuable references and inspiration in urban planning and traffic management.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic Signal Control
    Devailly, Francois-Xavier
    Larocque, Denis
    Charlin, Laurent
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7496 - 7507
  • [42] Dynamic Spatio-Temporal Graph-Based CNNs for Traffic Flow Prediction
    Chen, Ken
    Chen, Fei
    Lai, Baisheng
    Jin, Zhongming
    Liu, Yong
    Li, Kai
    Wei, Long
    Wang, Pengfei
    Tang, Yandong
    Huang, Jianqiang
    Hua, Xian-Sheng
    IEEE ACCESS, 2020, 8 : 185136 - 185145
  • [43] Temporal Metrics Based Aggregated Graph Convolution Network for traffic forecasting
    Chen, Fangshu
    Qi, Yanqiang
    Wang, Jiahui
    Chen, Lu
    Zhang, Yufei
    Shi, Linxiang
    NEUROCOMPUTING, 2023, 556
  • [44] Spatiotemporal interactive dynamic adaptive adversarial graph convolution network for traffic flow forecasting
    Zhang, Hong
    Chen, Linbiao
    Cao, Jie
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2024, 12 (01)
  • [45] Optimizing Traffic Signals in Smart Cities Based on Genetic Algorithm
    Al-Madi, Nagham A.
    Hnaif, Adnan A.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 40 (01): : 65 - 74
  • [46] Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
    Liu, Yunchang
    Wan, Fei
    Liang, Chengwu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 4343 - 4361
  • [47] Driven traffic flow prediction in smart cities using hunter-prey optimization with hybrid deep learning models
    Alzughaibi, Arwa
    Karim, Faten K.
    Darwish, Jumanah Ahmed
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 107 : 625 - 633
  • [48] Prediction Model for Expressway Traffic Flow of Regional Central Cities Based on Time-segments
    Zhu, Ruixin
    SEVENTH INTERNATIONAL CONFERENCE ON TRAFFIC ENGINEERING AND TRANSPORTATION SYSTEM, ICTETS 2023, 2024, 13064
  • [49] Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Xin, Xiaoyang
    Cheng, Zesheng
    Xia, Fengqian
    Li, Jianbo
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (08) : 120 - 133
  • [50] Supervised Reinforcement Session Recommendation Model Based on Dual-Graph Convolution
    Liang, Shunpan
    Zhang, Guozheng
    Ren, Wenhui
    IEEE ACCESS, 2023, 11 : 115380 - 115391