Deep Learning-Enabled Assessment of Left Heart Structure and Function Predicts Cardiovascular Outcomes

被引:20
作者
Lau, Emily S. [1 ,2 ,3 ,4 ]
Di Achille, Paolo [4 ,5 ]
Kopparapu, Kavya [4 ,5 ]
Andrews, Carl T. [1 ]
Singh, Pulkit [4 ,5 ]
Reeder, Christopher [4 ,5 ]
Al-Alusi, Mostafa [1 ,2 ,3 ,4 ]
Khurshid, Shaan [1 ,2 ,3 ,4 ]
Haimovich, Julian S. [1 ,2 ,3 ,4 ]
Ellinor, Patrick T. [1 ,2 ,3 ,4 ]
Picard, Michael H. [1 ]
Batra, Puneet [3 ,4 ,5 ]
Lubitz, Steven A. [1 ,2 ,3 ,4 ]
Ho, Jennifer E. [3 ,4 ,6 ,7 ,8 ]
机构
[1] Massachusetts Gen Hosp, Dept Med, Div Cardiol, Boston, MA USA
[2] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA USA
[3] Harvard Univ, Cardiovasc Dis Initiat, Broad Inst, Cambridge, MA USA
[4] MIT, Cambridge, MA USA
[5] Harvard Univ, Broad Inst, Data Sci Platform, Cambridge, MA USA
[6] Beth Israel Deaconess Med Ctr, Cardiovasc Inst, Boston, MA USA
[7] Beth Israel Deaconess Med Ctr, Dept Med, Div Cardiol, Boston, MA USA
[8] Beth Israel Deaconess Med Ctr, 330 Brookline Ave,E CLS 945, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
cardiovascular disease; deep learning; echocardiography; electronic health record; CARDIAC CHAMBER QUANTIFICATION; EUROPEAN ASSOCIATION; EJECTION FRACTION; AMERICAN SOCIETY; ECHOCARDIOGRAPHY; FAILURE; RECOMMENDATIONS; ADULTS; UPDATE;
D O I
10.1016/j.jacc.2023.09.800
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Deep learning interpretation of echocardiographic images may facilitate automated assessment of cardiac structure and function.OBJECTIVES We developed a deep learning model to interpret echocardiograms and examined the association of deep learning-derived echocardiographic measures with incident outcomes.METHODS We trained and validated a 3-dimensional convolutional neural network model for echocardiographic view classification and quantification of left atrial dimension, left ventricular wall thickness, chamber diameter, and ejection fraction. The training sample comprised 64,028 echocardiograms (n = 27,135) from a retrospective multi-institutional ambulatory cardiology electronic health record sample. Validation was performed in a separate longitudinal primary care sample and an external health care system data set. Cox models evaluated the association of model-derived left heart measures with incident outcomes.RESULTS Deep learning discriminated echocardiographic views (area under the receiver operating curve >0.97 for parasternal long axis, apical 4-chamber, and apical 2-chamber views vs human expert annotation) and quantified standard left heart measures (R2 range = 0.53 to 0.91 vs study report values). Model performance was similar in 2 external validation samples. Model-derived left heart measures predicted incident heart failure, atrial fibrillation, myocardial infarction, and death. A 1-SD lower model-left ventricular ejection fraction was associated with 43% greater risk of heart failure (HR: 1.43; 95% CI: 1.23-1.66) and 17% greater risk of death (HR: 1.17; 95% CI: 1.06-1.30). Similar results were observed for other model-derived left heart measures.CONCLUSIONS Deep learning echocardiographic interpretation accurately quantified standard measures of left heart structure and function, which in turn were associated with future clinical outcomes. Deep learning may enable automated echocardiogram interpretation and disease prediction at scale. (J Am Coll Cardiol 2023;82:1936-1948)(c) 2023 by the American College of Cardiology Foundation.
引用
收藏
页码:1936 / 1948
页数:13
相关论文
共 21 条
[1]   VALUE OF ECHOCARDIOGRAPHIC MEASUREMENT OF LEFT-VENTRICULAR MASS IN PREDICTING CARDIOVASCULAR MORBID EVENTS IN HYPERTENSIVE MEN [J].
CASALE, PN ;
DEVEREUX, RB ;
MILNER, M ;
ZULLO, G ;
HARSHFIELD, GA ;
PICKERING, TG ;
LARAGH, JH .
ANNALS OF INTERNAL MEDICINE, 1986, 105 (02) :173-178
[2]   Electronic health records to facilitate clinical research [J].
Cowie, Martin R. ;
Blomster, Juuso I. ;
Curtis, Lesley H. ;
Duclaux, Sylvie ;
Ford, Ian ;
Fritz, Fleur ;
Goldman, Samantha ;
Janmohamed, Salim ;
Kreuzer, Joerg ;
Leenay, Mark ;
Michel, Alexander ;
Ong, Seleen ;
Pell, Jill P. ;
Southworth, Mary Ross ;
Stough, Wendy Gattis ;
Thoenes, Martin ;
Zannad, Faiez ;
Zalewski, Andrew .
CLINICAL RESEARCH IN CARDIOLOGY, 2017, 106 (01) :1-9
[3]   High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning [J].
Duffy, Grant ;
Cheng, Paul P. ;
Yuan, Neal ;
He, Bryan ;
Kwan, Alan C. ;
Shun-Shin, Matthew J. ;
Alexander, Kevin M. ;
Ebinger, Joseph ;
Lungren, Matthew P. ;
Rader, Florian ;
Liang, David H. ;
Schnittger, Ingela ;
Ashley, Euan A. ;
Zou, James Y. ;
Patel, Jignesh ;
Witteles, Ronald ;
Cheng, Susan ;
Ouyang, David .
JAMA CARDIOLOGY, 2022, 7 (04) :386-395
[4]   Deep learning interpretation of echocardiograms [J].
Ghorbani, Amirata ;
Ouyang, David ;
Abid, Abubakar ;
He, Bryan ;
Chen, Jonathan H. ;
Harrington, Robert A. ;
Liang, David H. ;
Ashley, Euan A. ;
Zou, James Y. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[5]   Blinded, randomized trial of sonographer versus AI cardiac function assessment [J].
He, Bryan ;
Kwan, Alan C. ;
Cho, Jae Hyung ;
Yuan, Neal ;
Pollick, Charles ;
Shiota, Takahiro ;
Ebinger, Joseph ;
Bello, Natalie A. ;
Wei, Janet ;
Josan, Kiranbir ;
Duffy, Grant ;
Jujjavarapu, Melvin ;
Siegel, Robert ;
Cheng, Susan ;
Zou, James Y. ;
Ouyang, David .
NATURE, 2023, 616 (7957) :520-+
[6]   Cohort design and natural language processing to reduce bias in electronic health records research [J].
Khurshid, Shaan ;
Reeder, Christopher ;
Harrington, Lia X. ;
Singh, Pulkit ;
Sarma, Gopal ;
Friedman, Samuel F. ;
Di Achille, Paolo ;
Diamant, Nathaniel ;
Cunningham, Jonathan W. ;
Turner, Ashby C. ;
Lau, Emily S. ;
Haimovich, Julian S. ;
Al-Alusi, Mostafa A. ;
Wang, Xin ;
Klarqvist, Marcus D. R. ;
Ashburner, Jeffrey M. ;
Diedrich, Christian ;
Ghadessi, Mercedeh ;
Mielke, Johanna ;
Eilken, Hanna M. ;
McElhinney, Alice ;
Derix, Andrea ;
Atlas, Steven J. ;
Ellinor, Patrick T. ;
Philippakis, Anthony A. ;
Anderson, Christopher D. ;
Ho, Jennifer E. ;
Batra, Puneet ;
Lubitz, Steven A. .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[7]   MoViNets: Mobile Video Networks for Efficient Video Recognition [J].
Kondratyuk, Dan ;
Yuan, Liangzhe ;
Li, Yandong ;
Zhang, Li ;
Tan, Mingxing ;
Brown, Matthew ;
Gong, Boqing .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :16015-16025
[8]   Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J].
Lang, Roberto M. ;
Badano, Luigi P. ;
Mor-Avi, Victor ;
Afilalo, Jonathan ;
Armstrong, Anderson ;
Ernande, Laura ;
Flachskampf, Frank A. ;
Foster, Elyse ;
Goldstein, Steven A. ;
Kuznetsova, Tatiana ;
Lancellotti, Patrizio ;
Muraru, Denisa ;
Picard, Michael H. ;
Rietzschel, Ernst R. ;
Rudski, Lawrence ;
Spencer, Kirk T. ;
Tsang, Wendy ;
Voigt, Jens-Uwe .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2015, 28 (01) :1-U170
[9]   Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J].
Lang, Roberto M. ;
Badano, Luigi P. ;
Mor-Avi, Victor ;
Afilalo, Jonathan ;
Armstrong, Anderson ;
Ernande, Laura ;
Flachskampf, Frank A. ;
Foster, Elyse ;
Goldstein, Steven A. ;
Kuznetsova, Tatiana ;
Lancellotti, Patrizio ;
Muraru, Denisa ;
Picard, Michael H. ;
Rietzschel, Ernst R. ;
Rudski, Lawrence ;
Spencer, Kirk T. ;
Tsang, Wendy ;
Voigt, Jens-Uwe .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2015, 16 (03) :233-271
[10]   Fast and accurate view classification of echocardiograms using deep learning [J].
Madani, Ali ;
Arnaout, Ramy ;
Mofrad, Mohammad ;
Arnaout, Rima .
NPJ DIGITAL MEDICINE, 2018, 1