Intelligent Reflecting Surface Enhanced Wireless Communications With MultiHead-Attention Sparse Autoencoder-Based Channel Prediction

被引:2
作者
Chen, Hong-Yunn [1 ]
Wu, Meng-Hsun [2 ]
Yang, Ta-Wei [1 ]
Liao, Jia-Wei [2 ]
Huang, Chih-Wei [3 ]
Chou, Cheng-Fu [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Networking & Multimedia, Taipei 106319, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 106319, Taiwan
[3] Natl Cent Univ, Dept Commun Engn, Taoyuan 320317, Taiwan
关键词
Radio frequency; Noise reduction; Wireless communication; OFDM; Symbols; Head; Frequency-domain analysis; Channel prediction; sixth generation (6G); intelligent reflecting surface (IRS); denoising sparse autoencoder millimeter-wave; multi-head attention; ASSISTED MIMO SYSTEMS;
D O I
10.1109/LCOMM.2023.3309033
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Upcoming 6G wireless networks promise faster speeds, lower latency, and increased capacity. A key innovation is the intelligent reflecting surface (IRS), which enhances coverage, capacity, and energy efficiency. However, the complex training and computational costs associated with the IRS's passive components pose challenges for channel prediction. We address this by applying the denoising method on raw data as well as multihead attention for discovery of hidden patterns in complex data, and then using sparse encoding in latent space to retain important information for capturing cross-domain features in the space, time, and frequency domain. Numerical results demonstrate significant performance improvements in channel prediction for IRS-assisted millimeter-wave MIMO OFDM systems.
引用
收藏
页码:2757 / 2761
页数:5
相关论文
共 15 条
[1]   Low-Complexity Channel Estimation and Passive Beamforming for RIS-Assisted MIMO Systems Relying on Discrete Phase Shifts [J].
An, Jiancheng ;
Xu, Chao ;
Gan, Lu ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) :1245-1260
[2]   Attention-Aided Autoencoder-Based Channel Prediction for Intelligent Reflecting Surface-Assisted Millimeter-Wave Communications [J].
Chen, Hong-Yunn ;
Wu, Meng-Hsun ;
Yang, Ta-Wei ;
Huang, Chih-Wei ;
Chou, Cheng-Fu .
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (04) :1906-1919
[3]   Channel Estimation for Intelligent Reflecting Surface Assisted MIMO Systems: A Tensor Modeling Approach [J].
de Araujo, Gilderlan T. ;
de Almeida, Andre L. F. ;
Boyer, Remy .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) :789-802
[4]   Uplink Cascaded Channel Estimation for Intelligent Reflecting Surface Assisted Multiuser MISO Systems [J].
Guo, Huayan ;
Lau, Vincent K. N. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 :3964-3977
[5]   Cascaded Channel Estimation for Large Intelligent Metasurface Assisted Massive MIMO [J].
He, Zhen-Qing ;
Yuan, Xiaojun .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :210-214
[6]   Practical Channel Estimation and Phase Shift Design for Intelligent Reflecting Surface Empowered MIMO Systems [J].
Kim, Sucheol ;
Lee, Hyeongtaek ;
Cha, Jihoon ;
Kim, Sung-Jin ;
Park, Jaeyong ;
Choi, Junil .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) :6226-6241
[7]   DCSaNet: Dilated Convolution and Self-Attention-Based Neural Network for Channel Estimation in IRS-Aided Multi-User Communication System [J].
Li, Tingting ;
Yang, Yang ;
Lee, Jemin ;
Qin, Xiaoqi ;
Huang, Jingfei ;
He, Gang .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (07) :1139-1143
[8]   Learning via Denoising Autoencoder on 5G NR Phase Noise Estimation [J].
Lin, Mu-sheng ;
Kwon, Hyukjoon .
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
[9]   Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces [J].
Liu, Shicong ;
Gao, Zhen ;
Zhang, Jun ;
Di Renzo, Marco ;
Alouini, Mohamed-Slim .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) :9223-9228
[10]   Channel Estimation Approach for RIS Assisted MIMO Systems [J].
Shtaiwi, Eyad ;
Zhang, Hongliang ;
Vishwanath, Sriram ;
Youssef, Moustafa ;
Abdelhadi, Ahmed ;
Han, Zhu .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (02) :452-465