In this article, we propose a data-driven reduced basis (RB) method for the approximation of parametric eigenvalue problems. The method is based on the offline and online paradigms. In the offline stage, we generate snapshots and construct the basis of the reduced space, using a POD approach. Gaussian process regressions (GPR) are used for approximating the eigenvalues and projection coefficients of the eigenvectors in the reduced space. All the GPR corresponding to the eigenvalues and projection coefficients are trained in the offline stage, using the data generated in the offline stage. The output corresponding to new parameters can be obtained in the online stage using the trained GPR. The proposed algorithm is used to solve affine and non-affine parameter-dependent eigenvalue problems. The numerical results demonstrate the robustness of the proposed non-intrusive method.
机构:
French Technol Res Inst Mat Met & Proc IRT M2P, 4 Rue Augustin Fresnel, F-57070 Metz, FranceArts & Metiers Inst Technol, PIMM Lab, 151 Blvd Hop, F-75013 Paris, France
机构:
NASA Ames Res Ctr, Moffett Field, CA 94035 USA
Embry Riddle Aeronaut Univ, Dept Aerosp Engn, Daytona Beach, FL 32114 USANASA Ames Res Ctr, Moffett Field, CA 94035 USA
Peters, Nicholas
Silva, Christopher
论文数: 0引用数: 0
h-index: 0
机构:
NASA Ames Res Ctr, Moffett Field, CA 94035 USANASA Ames Res Ctr, Moffett Field, CA 94035 USA
Silva, Christopher
Ekaterinaris, John
论文数: 0引用数: 0
h-index: 0
机构:
Embry Riddle Aeronaut Univ, Dept Aerosp Engn, Daytona Beach, FL 32114 USANASA Ames Res Ctr, Moffett Field, CA 94035 USA