Data-driven reduced order modeling for parametric PDE eigenvalue problems using Gaussian process regression

被引:3
|
作者
Bertrand, Fleurianne [1 ]
Boffi, Daniele [2 ,3 ]
Halim, Abdul [2 ,4 ]
机构
[1] TU Chemnitz, Chemnitz, Germany
[2] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[3] Univ Pavia, Pavia, Italy
[4] Munger Univ, HS Coll, Munger, India
关键词
Reduced basis method; Gaussian process regression; Eigenvalue problem; Proper orthogonal decomposition; Non-intrusive method; ORTHOGONAL DECOMPOSITION METHODS; BASIS APPROXIMATION; ELEMENT-METHOD; BOUNDS;
D O I
10.1016/j.jcp.2023.112503
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we propose a data-driven reduced basis (RB) method for the approximation of parametric eigenvalue problems. The method is based on the offline and online paradigms. In the offline stage, we generate snapshots and construct the basis of the reduced space, using a POD approach. Gaussian process regressions (GPR) are used for approximating the eigenvalues and projection coefficients of the eigenvectors in the reduced space. All the GPR corresponding to the eigenvalues and projection coefficients are trained in the offline stage, using the data generated in the offline stage. The output corresponding to new parameters can be obtained in the online stage using the trained GPR. The proposed algorithm is used to solve affine and non-affine parameter-dependent eigenvalue problems. The numerical results demonstrate the robustness of the proposed non-intrusive method.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Path Generating Inverse Gaussian Process Regression for Data-Driven Ultimate Boundedness Control of Nonlinear Systems
    Jang, Yeongjun
    Chang, Hamin
    Park, Heein
    Shim, Hyungbo
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 748 - 753
  • [32] A Gaussian process regression reduced order model for geometrically nonlinear structures
    Park, Kyusic
    Allen, Matthew S.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 184
  • [33] Uncertainty quantification for nonlinear solid mechanics using reduced order models with Gaussian process regression
    Cicci, Ludovica
    Fresca, Stefania
    Guo, Mengwu
    Manzoni, Andrea
    Zunino, Paolo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 149 : 1 - 23
  • [34] Data-driven photocatalytic degradation activity prediction with Gaussian process
    Chow, Vinky
    Phan, Raphael C-W
    Le Ngo, Anh Cat
    Krishnasamy, Ganesh
    Chai, Siang-Piao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 161 : 848 - 859
  • [35] Modeling advanced air mobility aircraft in data-driven reduced order realistic urban winds
    Vuppala, Rohit K. S. S.
    Krawczyk, Zack
    Paul, Ryan
    Kara, Kursat
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [36] Data Driven Prognosis of Fracture Dynamics Using Tensor Train and Gaussian Process Regression
    Duong, Pham Luu Trung
    Hussain, Shaista
    Jhon, Mark Hyunpong
    Raghavan, Nagarajan
    IEEE ACCESS, 2020, 8 : 222256 - 222266
  • [37] Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process
    Derouiche, Khouloud
    Garois, Sevan
    Champaney, Victor
    Daoud, Monzer
    Traidi, Khalil
    Chinesta, Francisco
    METALS, 2021, 11 (05)
  • [38] A data-driven reduced-order model for rotor optimization
    Peters, Nicholas
    Silva, Christopher
    Ekaterinaris, John
    WIND ENERGY SCIENCE, 2023, 8 (07) : 1201 - 1223
  • [39] Experimental validation of data-driven reactive control strategy for wave energy converters: A Gaussian process regression approach
    Umeda, Jun
    Taniguchi, Tomoki
    Katayama, Toru
    OCEAN ENGINEERING, 2024, 308
  • [40] Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression
    Deng, Zhongwei
    Hu, Xiaosong
    Lin, Xianke
    Che, Yunhong
    Xu, Le
    Guo, Wenchao
    ENERGY, 2020, 205