Calibration-free blood pressure estimation based on a convolutional neural network

被引:0
|
作者
Cho, Jinwoo [1 ]
Shin, Hangsik [2 ,5 ]
Choi, Ahyoung [3 ,4 ]
机构
[1] Bud on Co Ltd, Seoul, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Digital Med, Seoul, South Korea
[3] Gachon Univ, Dept AI Software, Seongnam, South Korea
[4] Gachon Univ, Dept AI Software, Seongnam 13120, South Korea
[5] Univ Ulsan, Asan Med Ctr, Dept Digital Med, Coll Med, Seoul 05505, South Korea
基金
新加坡国家研究基金会;
关键词
blood pressure estimation; convolutional neural network; electrocardiogram; photoplethysmogram; wearable environment; PULSE TRANSIT-TIME; WAVE; VARIABILITY; DISPERSION; DURATION;
D O I
10.1111/psyp.14480
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
In this study, we conducted research on a deep learning-based blood pressure (BP) estimation model suitable for wearable environments. To measure BP while wearing a wearable watch, it needs to be considered that computing power for signal processing is limited and the input signals are subject to noise interference. Therefore, we employed a convolutional neural network (CNN) as the BP estimation model and utilized time-series electrocardiogram (ECG) and photoplethysmogram (PPG) signals, which are quantifiable in a wearable context. We generated periodic input signals and used differential and thresholding methods to decrease noise in the preprocessing step. We then applied a max-pooling technique with filter sizes of 2 x 1 and 5 x 1 within a 3-layer convolutional neural network to estimate BP. Our method was trained, validated, and tested using 2.4 million data samples from 49 patients in the intensive care unit. These samples, totaling 3.1 GB were obtained from the publicly accessible MIMIC database. As a result of a test with 480,000 data samples, the average root mean square error in BP estimation was 3.41, 5.80, and 2.78 mm Hg in the prediction of pulse pressure, systolic BP (SBP), and diastolic BP (DBP), respectively. The cumulative error percentage less than 5 mm Hg was 68% and 93% for SBP and DBP, respectively. In addition, the cumulative error percentage less than 15 mm Hg was 98% and 99% for SBP and DBP. Subsequently, we evaluated the impact of changes in input signal length (1 cycle vs. 30 s) and the introduction of noise on BP estimation results. The experimental results revealed that the length of the input signal did not significantly affect the performance of CNN-based analysis. When estimating BP using noise-added ECG signals, the mean absolute error (MAE) for SBP and DBP was 9.72 and 6.67 mm Hg, respectively. Meanwhile, when using noise-added PPG signals, the MAE for SBP and DBP was 26.85 and 14.00 mm Hg, respectively. Therefore, this study confirmed that using ECG signals rather than PPG signals is advantageous for noise reduction in a wearable environment. Besides, short sampling frames without calibration can be effective as input signals. Furthermore, it demonstrated that using a model suitable for information extraction rather than a specialized deep learning model for sequential data can yield satisfactory results in BP estimation.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals
    Esmaelpoor, Jamal
    Moradi, Mohammad Hassan
    Kadkhodamohammadi, Abdolrahim
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 120
  • [22] Topological Charge Estimation of Vortex Beams Based on Convolutional Neural Network
    Jiang Jinyang
    Liu Xiaoyun
    Chen Yonghao
    Gao Siyu
    Liu Ying
    Zhao Zihao
    Jiang Yueqiu
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (13)
  • [23] Age Estimation Based on Multi-Region Convolutional Neural Network
    Liu, Ting
    Wan, Jun
    Yu, Tingzhao
    Lei, Zhen
    Li, Stan Z.
    BIOMETRIC RECOGNITION, 2016, 9967 : 186 - 194
  • [24] Image dehazing based on joint estimation via convolutional neural network
    Wang K.-Y.
    Wang D.
    Zhao X.
    Chen J.-Y.
    Li Y.-S.
    1771, Editorial Board of Jilin University (50): : 1771 - 1777
  • [25] A survey of crowd counting and density estimation based on convolutional neural network
    Fan, Zizhu
    Zhang, Hong
    Zhang, Zheng
    Lu, Guangming
    Zhang, Yudong
    Wang, Yaowei
    NEUROCOMPUTING, 2022, 472 : 224 - 251
  • [26] Repetitive neural network (RNN) based blood pressure estimation using PPG and ECG signals
    Senturk, Umit
    Yucedag, Ibrahim
    Polat, Kemal
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 188 - 191
  • [27] Enhanced Convolutional Neural Network for Age Estimation
    Aruleba, Idowu
    Viriri, Serestina
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 385 - 394
  • [28] Structure parameter estimation of microstrip filter based on convolutional neural network
    Zhang Y.-J.
    Cheng S.-Y.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (12): : 3022 - 3028
  • [29] Ghost Imaging with Probability Estimation Using Convolutional Neural Network* - Improving Estimation Accuracy Using Parallel Convolutional Neural Network -
    Kataoka, Shoma
    Mizutani, Yasuhiro
    Uenohara, Tsutomu
    Takaya, Yasuhiro
    OPTICAL TECHNOLOGY AND MEASUREMENT FOR INDUSTRIAL APPLICATIONS CONFERENCE 2021, 2021, 11927
  • [30] Convolutional Neural Network for Honeybee Density Estimation
    Luneckas, Tomas
    Luneckas, Mindaugas
    Salem, Ziad
    Szopek, Martina
    Schmickl, Thomas
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2558 - 2566