ARE-Net: An Improved Interactive Model for Accurate Building Extraction in High-Resolution Remote Sensing Imagery

被引:1
|
作者
Weng, Qian [1 ,2 ]
Wang, Qin [1 ,2 ]
Lin, Yifeng [1 ,2 ]
Lin, Jiawen [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350000, Peoples R China
[2] Fuzhou Univ, Fujian Key Lab Network Comp & Intelligent Informat, Fuzhou 350000, Peoples R China
基金
中国国家自然科学基金;
关键词
interactive building extraction; adaptive-radius encoding; two-stage training; remote sensing; SEGMENTATION; CUT;
D O I
10.3390/rs15184457
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate building extraction for high-resolution remote sensing images is critical for topographic mapping, urban planning, and many other applications. Its main task is to label each pixel point as a building or non-building. Although deep-learning-based algorithms have significantly enhanced the accuracy of building extraction, fully automated methods for building extraction are limited by the requirement for a large number of annotated samples, resulting in a limited generalization ability, easy misclassification in complex remote sensing images, and higher costs due to the need for a large number of annotated samples. To address these challenges, this paper proposes an improved interactive building extraction model, ARE-Net, which adopts a deep interactive segmentation approach. In this paper, we present several key contributions. Firstly, an adaptive-radius encoding (ARE) module was designed to optimize the interaction features of clicks based on the varying shapes and distributions of buildings to provide maximum a priori information for building extraction. Secondly, a two-stage training strategy was proposed to enhance the convergence speed and efficiency of the segmentation process. Finally, some comprehensive experiments using two models of different sizes (HRNet18s+OCR and HRNet32+OCR) were conducted on the Inria and WHU building datasets. The results showed significant improvements over the current state-of-the-art method in terms of NoC90. The proposed method achieved performance enhancements of 7.98% and 13.03% with HRNet18s+OCR and 7.34% and 15.49% with HRNet32+OCR on the WHU and Inria datasets, respectively. Furthermore, the experiments demonstrated that the proposed ARE-Net method significantly reduced the annotation costs while improving the convergence speed and generalization performance.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] HA U-Net: Improved Model for Building Extraction From High Resolution Remote Sensing Imagery
    Xu, Leilei
    Liu, Yujun
    Yang, Peng
    Chen, Hao
    Zhang, Hanyue
    Wang, Dan
    Zhang, Xin
    IEEE ACCESS, 2021, 9 (09): : 101972 - 101984
  • [2] Building Extraction From Remote Sensing Imagery With a High-Resolution Capsule Network
    Yu, Yongtao
    Liu, Chao
    Gao, Junyong
    Jin, Shenghua
    Jiang, Xiaoling
    Jiang, Mingxin
    Zhang, Haiyan
    Zhang, Yahong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] MMRAD-Net: A Multi-Scale Model for Precise Building Extraction from High-Resolution Remote Sensing Imagery with DSM Integration
    Gao, Yu
    Chai, Huiming
    Lv, Xiaolei
    REMOTE SENSING, 2025, 17 (06)
  • [4] MHA-Net: Multipath Hybrid Attention Network for Building Footprint Extraction From High-Resolution Remote Sensing Imagery
    Cai, Jihong
    Chen, Yimin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5807 - 5817
  • [5] Building Polygon Extraction from High-Resolution Remote Sensing Imagery Using Knowledge Distillation
    Xu, Haiyan
    Xu, Gang
    Sun, Geng
    Chen, Jie
    Hao, Jun
    Mourtzis, Dimitris
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [6] Building Extraction in Multitemporal High-Resolution Remote Sensing Imagery Using a Multifeature LSTM Network
    Wang, Yuhan
    Gu, Lingjia
    Li, Xiaofeng
    Ren, Ruizhi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (09) : 1645 - 1649
  • [7] On the Effectiveness of Weakly Supervised Semantic Segmentation for Building Extraction From High-Resolution Remote Sensing Imagery
    Li, Zhenshi
    Zhang, Xueliang
    Xiao, Pengfeng
    Zheng, Zixian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3266 - 3281
  • [8] Memory-Contrastive Unsupervised Domain Adaptation for Building Extraction of High-Resolution Remote Sensing Imagery
    Chen, Jie
    He, Peien
    Zhu, Jingru
    Guo, Ya
    Sun, Geng
    Deng, Min
    Li, Haifeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Building area extraction from the high spatial resolution remote sensing imagery
    Shi, Wenzao
    Mao, Zhengyuan
    Liu, Jinqing
    EARTH SCIENCE INFORMATICS, 2019, 12 (01) : 19 - 29
  • [10] Advances and Future Prospects in Building Extraction From High-Resolution Remote Sensing Images
    Yang, Dongjie
    Gao, Xianjun
    Yang, Yuanwei
    Guo, Kangliang
    Han, Kuikui
    Xu, Lei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 6994 - 7016