The Brezis-Nirenberg problem for systems involving divergence-form operators

被引:1
作者
Brown, Burton [1 ]
Gluck, Mathew [2 ]
Guingona, Vince [3 ]
Hammons, Thomas [4 ]
Parnes, Miriam [3 ]
Pooley, Sean [5 ]
Schweitzer, Avery [6 ]
机构
[1] Amer Publ Univ, Human Resources Off, 111 W Congress St, Charles Town, WV 25414 USA
[2] Southern Illinois Univ, Dept Zool, Neckers A360, 1245 Lincoln Dr, Mail Stop 4408, Carbondale, IL 62901 USA
[3] Towson Univ, Dept Math, 7800 York Rd,Room 316, Towson, MD 21252 USA
[4] Univ Illinois, 851 S Morgan St,322 Sci & Engn Off,M-C 249, Chicago, IL 60607 USA
[5] Univ Mississippi, Hume Hall 305, University, MS 38677 USA
[6] North Carolina State Univ, 2108 SAS Hall Box 8205, Raleigh, NC 27695 USA
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 06期
基金
美国国家科学基金会;
关键词
Semilinear elliptic system; Critical exponent; Positive solution; NONLINEAR ELLIPTIC PROBLEMS; INEQUALITIES; EXISTENCE;
D O I
10.1007/s00030-023-00882-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a system of nonlinear elliptic partial differential equations involving divergence-form operators. The problem under consideration is a natural generalization of the classical Brezis-Nirenberg problem. We find conditions on the domain, the coupling coefficients and the coefficients of the differential operator under which positive solutions are guaranteed to exist and conditions on these objects under which no positive solution exists.
引用
收藏
页数:27
相关论文
共 21 条
  • [1] On systems of elliptic equations involving subcritical or critical Sobolev exponents
    Alves, CO
    de Morais, DC
    Souto, MAS
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) : 771 - 787
  • [2] Aubin T., 1976, J. Differential Geom., V11, P573
  • [3] Extremal maps in best constants vector theory. Part I: Duality and compactness
    Barbosa, Ezequiel R.
    Montenegro, Marcos
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (01) : 331 - 399
  • [4] POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS
    BREZIS, H
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) : 437 - 477
  • [5] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [6] CAFFARELLI L, 1984, COMPOS MATH, V53, P259
  • [7] AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT
    CAPOZZI, A
    FORTUNATO, D
    PALMIERI, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06): : 463 - 470
  • [8] On the regularity of solutions in the Pucci-Serrin identity
    Degiovanni, M
    Musesti, A
    Squassina, M
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) : 317 - 334
  • [10] The Brezis-Nirenberg problem for nonlocal systems
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    Squassina, Marco
    Zhang, Chengxiang
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (01) : 85 - 103