Landslide Detection Based on Efficient Residual Channel Attention Mechanism Network and Faster R-CNN

被引:2
|
作者
Jin, Yabing [1 ]
Ou, Ou [2 ]
Wang, Shanwen [2 ]
Liu, Yijun [1 ]
Niu, Haoqing [2 ]
Leng, Xiaopeng [2 ]
机构
[1] Geol Bur Shenzhen, Shenzhen 518028, Peoples R China
[2] Chengdu Univ Technol, Coll Comp & Network Secur, Chengdu 610051, Sichuan, Peoples R China
关键词
landslide detection; deep learning; Faster R-CNN; ERCA; EARTHQUAKE;
D O I
10.2298/CSIS220831003J
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate landslide detection plays an important role in land planning, disaster prediction and disaster relief.At present, field investigation and exploration based on professional personnel is the most widely used landslide mapping and detection technology, but this method consumes a lot of manpower and material resources and is inefficient.With the development of artificial intelligence, landslide identification and target detection based on deep learning have attracted more and more attention due to their remarkable advantages over traditional technologies. It is a technical problem to identify landslides from satellite remote sensing images. Although there are some methods at present, there is still room for improvement in the target detection algorithm of landslides against the background of the diversity and complexity of landslides. In this paper, target detection algorithm models such as Faster R-CNN apply to landslide recognition and detection tasks, and various commonly used recognition and detection algorithm network structures are used as the basic models for landslide recognition. Efficient residual channel soft thresholding attention mechanism algorithm (ERCA) is proposed, which intends to reduce the background noise of images in complex environments by means of deep learning adaptive soft thresholding to improve the feature learning capability of deep learning target detection algorithms. ERCA is added to the backbone network of the target detection algorithm for basic feature extraction to enhance the feature extraction and expression capability of the network. During the experiment ERCA combined with ResNet50, ResNet101 and other backbone networks, the objective indicators of detection results such as AP50 (Average Precision at IOU=0.50), AP75 (Average Precision at IOU=0.75) and AP (Average Precision) were improved, and the AP values were all improved to about 4%, and the final detection results using ResNet101 combined with ERCA as the backbone network reached 76.4% AP value. ERCA and other advanced channel attention networks such as ECA (Efficient Channel Attention for Deep Convolutional Neural Networks) and SENet (Squeeze and-Excitation Networks) are fused into the backbone network of the target detection algorithm and experimented on the landslide identification detection task, and the detection results are that the objective detection indexes AP50, AP75, AP, etc. are higher for ERCA compared with other channel attention, and the subjective detection image detection effect and feature map visualization display are also better.3
引用
收藏
页码:893 / 910
页数:18
相关论文
共 50 条
  • [41] Fruit target detection method based on faster R-CNN
    Yin G.
    Xie Y.
    Yun J.
    Ning L.
    Liu Y.
    International Journal of Wireless and Mobile Computing, 2021, 21 (03): : 207 - 213
  • [42] Intelligent Detection of Parcels Based on Improved Faster R-CNN
    Zhao, Ke
    Wang, Yaonan
    Zhu, Qing
    Zuo, Yi
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [43] Lung Nodule Detection based on Faster R-CNN Framework
    Su, Ying
    Li, Dan
    Chen, Xiaodong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 200 (200)
  • [44] An Improved Faster R-CNN for Object Detection
    Liu, Yu
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 119 - 123
  • [45] Image Detection Method for Broccoli Seedlings in Field Based on Faster R-CNN
    Sun Z.
    Zhang C.
    Ge L.
    Zhang M.
    Li W.
    Tan Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (07): : 216 - 221
  • [46] Region-based Object Detection and Classification using Faster R-CNN
    Abbas, Syed Mazhar
    Singh, Shailendra Narayan
    2018 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2018,
  • [47] Pulmonary Nodule Detection Based on Faster R-CNN With Adaptive Anchor Box
    Nguyen, Chi Cuong
    Tran, Giang Son
    Nguyen, Van Thi
    Burie, Jean-Christophe
    Nghiem, Thi Phuong
    IEEE ACCESS, 2021, 9 : 154740 - 154751
  • [48] Insulator Detection Method in Inspection Image Based on Improved Faster R-CNN
    Zhao, Zhenbing
    Zhen, Zhen
    Zhang, Lei
    Qi, Yincheng
    Kong, Yinghui
    Zhang, Ke
    ENERGIES, 2019, 12 (07)
  • [49] Handwriting Text Recognition Based on Faster R-CNN
    Yang, Junqing
    Ren, Peng
    Kong, Xiaoxiao
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2450 - 2454
  • [50] Lithology Identification Based on Improved Faster R-CNN
    Fu, Peng
    Wang, Jiyang
    MINERALS, 2024, 14 (09)