Tea authentication and determination of chemical constituents using digital image-based fingerprint signatures and chemometrics

被引:15
作者
Fernandes, Jessica Silva [1 ]
Fernandes, David Douglas de Sousa [2 ]
Pistonesi, Marcelo Fabian [3 ]
Diniz, Paulo Henrique Goncalves Dias [1 ]
机构
[1] Univ Fed Oeste Bahia, Programa Posgrad Quim Pura & Aplicada, BR-47810059 Barreiras, BA, Brazil
[2] Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Quim, BR-58051970 Joao Pessoa, Paraiba, Brazil
[3] Univ Nacl Sur, Dept Quim, INQUISUR, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
Camellia sinensis; Variety; Geographical Origin; Colour Histograms; One-Class Classification; Multivariate Calibration; NIR SPECTROSCOPY; DISCRIMINANT-ANALYSIS; CLASSIFICATION;
D O I
10.1016/j.foodchem.2023.136164
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Tea (Camellia sinensis) fraud has been frequently identified and involves tampering with the labelling of inferior products or without geographical origin certification and even mixing them with superior quality teas to mask an adulteration. Consequently, economic losses and health damage to consumers are observed. Thus, a Chemometrics-assisted Color Histogram-based Analytical System (CACHAS) was employed a simple, cost-effective, reliable, and green analytical tool to screen the quality of teas. Data-Driven Soft Independent Modeling of Class Analogy was used to authenticate their geographical origin and category simultaneously, recognizing correctly all Argentinean and Sri Lankan black teas and Argentinean green teas. For the determi-nation of moisture, total polyphenols, and caffeine, Partial Least Squares obtained satisfactory predictive abili-ties, with values of root mean squared error of prediction (RMSEP) of 0.50, 0.788, and 0.25 mg kg-1, rpred of 0.81, 0.902, and 0.81, and relative error of prediction (REP) of 6.38, 9.031, and 14.58%., respectively. CACHAS proved to be a good alternative tool for environmentally-friendly non-destructive chemical analysis.
引用
收藏
页数:8
相关论文
共 32 条
[1]  
AFC, 2013, CAP 15 PROD EST FRUI
[2]   Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.) [J].
Ahammed, Golam Jalal ;
Li, Xin .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 185 :390-400
[3]  
[Anonymous], 2022, 24 SESS INT TEA GROU
[4]   Analysis of total phenolic compounds in tea and fruits using diazotized aminobenzenes colorimetric spots [J].
Azeem, Sami M. Abdel ;
Al Mohesen, Ibrahem A. ;
Ibrahim, Ahmed M. H. .
FOOD CHEMISTRY, 2020, 332
[5]   Digital image-based method for iron detection using green tea (Camellia sinensis) extract as natural colorimetric reagent [J].
Ballesteros, Joel, I ;
Caleja-Ballesteros, Harriet Jane R. ;
Villena, Marte C. .
MICROCHEMICAL JOURNAL, 2021, 160
[6]   Green food analysis: Current trends and perspectives [J].
Ballesteros-Vivas, Diego ;
Socas-Rodriguez, Barbara ;
Mendiola, Jose A. ;
Ibanez, Elena ;
Cifuentes, Alejandro .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2021, 31
[7]   Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview [J].
Bortolini, Debora Goncalves ;
Isidoro Haminiuk, Charles Windson ;
Pedro, Alessandra Cristina ;
Arruda Fernandes, Isabela de Andrade ;
Maciel, Giselle Maria .
FOOD CHEMISTRY-X, 2021, 12
[8]  
Diniz PHGD, 2015, ANAL METHODS-UK, V7, P3379, DOI [10.1039/C4AY03099K, 10.1039/c4ay03099k]
[9]   Using a simple digital camera and SPA-LDA modeling to screen teas [J].
Diniz, Paulo H. G. D. ;
Dantas, Hebertty V. ;
Melo, Karla D. T. ;
Barbosa, Mayara F. ;
Harding, David P. ;
Nascimento, Elaine C. L. ;
Pistonesi, Marcelo F. ;
Band, Beatriz S. F. ;
Araujo, Mario C. U. .
ANALYTICAL METHODS, 2012, 4 (09) :2648-2652
[10]   A method for calibration and validation subset partitioning [J].
Galvao, RKH ;
Araujo, MCU ;
José, GE ;
Pontes, MJC ;
Silva, EC ;
Saldanha, TCB .
TALANTA, 2005, 67 (04) :736-740