An Explicit Dual Control Approach for Constrained Reference Tracking of Uncertain Linear Systems

被引:5
作者
Parsi, Anilkumar [1 ]
Iannelli, Andrea [1 ]
Smith, Roy S. [1 ]
机构
[1] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Automat Control Lab, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Uncertainty; Measurement uncertainty; Linear systems; Electron tubes; Robustness; Adaptive control; Uncertain systems; Active learning; dual control; model predictive control; reference tracking; safe adaptive control; MODEL-PREDICTIVE CONTROL; SAFE; MPC;
D O I
10.1109/TAC.2022.3176800
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A finite horizon optimal tracking problem is considered for linear dynamical systems subject to parametric uncertainties in the state-space matrices and exogenous disturbances. A suboptimal solution is proposed using a model predictive control (MPC) based explicit dual control approach, which enables active uncertainty learning. A novel algorithm for the design of robustly invariant online terminal sets and terminal controllers is presented. Set membership identification is used to update the parameter uncertainty online. A predicted worst-case cost is used in the MPC optimization problem to model the dual effect of the control input. The cost-to-go is estimated using contractivity of the proposed terminal set and the remaining time horizon, so that the optimizer can estimate future benefits of exploration. The proposed dual control algorithm ensures robust constraint satisfaction and recursive feasibility, and navigates the exploration-exploitation tradeoff using a robust performance metric.
引用
收藏
页码:2652 / 2666
页数:15
相关论文
共 51 条
  • [1] Robust adaptive MPC for constrained uncertain nonlinear systems
    Adetola, Veronica
    Guay, Martin
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2011, 25 (02) : 155 - 167
  • [2] An Approximate Dynamic Programming Approach for Dual Stochastic Model Predictive Control
    Arcari, Elena
    Hewing, Lukas
    Zeilinger, Melanie N.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 8105 - 8111
  • [3] Astrom K., 2008, DAPTIVE CONTROL
  • [4] Provably safe and robust learning-based model predictive control
    Aswani, Anil
    Gonzalez, Humberto
    Sastry, S. Shankar
    Tomlin, Claire
    [J]. AUTOMATICA, 2013, 49 (05) : 1216 - 1226
  • [5] Implicit dual control based on particle filtering and forward dynamic programming
    Bayard, David S.
    Schumitzky, Alan
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2010, 24 (03) : 155 - 177
  • [6] Dynamic programming and suboptimal control: A survey from ADP to MPC
    Bertsekas, DP
    [J]. EUROPEAN JOURNAL OF CONTROL, 2005, 11 (4-5) : 310 - 334
  • [7] Blanchini F, 2008, SYST CONTROL-FOUND A, P1
  • [8] Borrelli F., 2017, PREDICTIVE CONTROL L
  • [9] Boyd Stephen, 2004, Convex Optimization, DOI [DOI 10.1017/CBO9780511804441, 10.1017/CBO9780511804441]
  • [10] Cohen A., 2019, INT C MACH LEARN, P1300