Orlicz-Hardy Weak Martingale Spaces for Two-parameter

被引:1
作者
Liu, Kaituo [1 ]
Lu, Jianzhong [2 ]
Wu, Jun [1 ]
Yue, Tian [1 ]
机构
[1] HuBei Univ Automot Technol, Sch Math Phys & Optoelect Engn, Shiyan 442002, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2023年 / 27卷 / 03期
关键词
two-parameter martingale; weak Orlicz-Hardy space; atomic decomposition; dual space; INTERPOLATION;
D O I
10.11650/tjm/230101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate several two-parameter weak Orlicz-Hardy martingale spaces generated by the p-convex and q-concave functions, and establish their atomic decomposition theorems. Using the atomic decomposition, we obtain a sufficient condition for the boundedness of a sublinear operator defined on the two-parameter weak Orlicz-Hardy martingale spaces. Furthermore, the dual spaces of the two-parameter weak Orlicz-Hardy martingale spaces are considered.
引用
收藏
页码:553 / 576
页数:24
相关论文
共 24 条
[1]  
Cairoli R., 1970, SEMINAIRE PROBABILIT, V4, P1
[2]  
Garsia A, 1973, Martingale inequalities, Seminar notes on recent progress
[3]   Vector-valued weak martingale Hardy spaces and atomic decompositions [J].
Hou, Y.-L. ;
Ren, Y.-B. .
ACTA MATHEMATICA HUNGARICA, 2007, 115 (03) :235-246
[4]   Weak martingale Hardy spaces and weak atomic decompositions [J].
Hou Youliang ;
Ren Yanbo .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (07) :912-921
[5]   Interpolation for weak Orlicz spaces with MΔ condition [J].
Jiao Yong ;
Peng LiHua ;
Liu PeiDe .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (11) :2072-2080
[6]   Weak Orlicz-Hardy martingale spaces [J].
Jiao, Yong ;
Wu, Lian ;
Peng, Lihua .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (08)
[7]   Embeddings between weak Orlicz martingale spaces [J].
Jiao, Yong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (01) :220-229
[8]   Interpolation on Weak Martingale Hardy Space [J].
Jiao, Yong ;
Chen, Wei ;
Liu, Pei De .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (08) :1297-1304
[9]   A weak type John-Nirenberg theorem for martingales [J].
Liu, Kaituo ;
Zhou, Dejian ;
Peng, Lihua .
STATISTICS & PROBABILITY LETTERS, 2017, 122 :190-197
[10]  
Liu N, 2010, ACTA MATH SCI, V30, P1492