Length spectrum compactification of the SO0(2,3)-Hitchin component

被引:3
作者
Ouyang, Charles [1 ]
Tamburelli, Andrea [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA USA
[2] Univ Pisa, Dept Math, Pisa, Italy
基金
美国国家科学基金会;
关键词
Higher Teichmuller theory; Maximal surfaces; Representations; Higgs bundles; Length spectrum; HIGGS BUNDLES; HITCHIN COMPONENTS; REPRESENTATIONS; SURFACES; DEGENERATION; EQUATIONS; GEOMETRY; ENTROPY; ANOSOV; SPACE;
D O I
10.1016/j.aim.2023.108997
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find a compactification of the SO0(2, 3)-Hitchin compo-nent by studying the degeneration of the induced metric on the unique equivariant maximal surface in the 4-dimensional pseudo-hyperbolic space H2,2. In the process, we establish the closure in the space of projectivized geodesic currents of the space of flat metrics induced by holomorphic quartic differ-entials on a Riemann surface. As an application, we describe the behavior of the entropy of the induced metric along rays of quartic differentials.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
[Anonymous], 1994, Differ. Integral Equ.
[3]   Strata of k-differentials [J].
Bainbridge, Matt ;
Chen, Dawei ;
Gendron, Quentin ;
Grushevsky, Samuel ;
Moeller, Martin .
ALGEBRAIC GEOMETRY, 2019, 6 (02) :196-233
[4]   MARKED-LENGTH-SPECTRAL RIGIDITY FOR FLAT METRICS [J].
Bankovic, Anja ;
Leininger, Christopher J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) :1867-1884
[5]  
Baraglia D, 2010, Arxiv, DOI arXiv:1002.1767
[6]   Cyclic Higgs bundles and the affine Toda equations [J].
Baraglia, David .
GEOMETRIAE DEDICATA, 2015, 174 (01) :25-42
[7]   THE GEOMETRY OF TEICHMULLER SPACE VIA GEODESIC CURRENTS [J].
BONAHON, F .
INVENTIONES MATHEMATICAE, 1988, 92 (01) :139-162
[8]   ENDS OF HYPERBOLIC MANIFOLDS OF DIMENSION-3 [J].
BONAHON, F .
ANNALS OF MATHEMATICS, 1986, 124 (01) :71-158
[9]  
Burger M, 2021, Arxiv, DOI arXiv:1902.07680
[10]  
Burger M., 2021, ARXIV