ON THE PRESERVATION OF SECOND INTEGRALS BY RUNGE-KUTTA METHODS

被引:1
|
作者
Tapley, Benjamin K. [1 ,2 ]
机构
[1] SINTEF Digital, Dept Math & Cybernet, N-0373 Oslo, Norway
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2023年 / 10卷 / 02期
基金
欧盟地平线“2020”;
关键词
Key veords and phrases; Dynamical systems; Runge-Kutta methods; second integrals; Darboux polynomials; discrete dynamical systems; SYSTEMS;
D O I
10.3934/jcd.2023001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One can elucidate integrability properties of ordinary differential equations (ODEs) by knowing the existence of second integrals (also known as weak integrals or Darboux polynomials for polynomial ODEs). However, little is known about how they are preserved, if at all, under numerical methods. Here, we leverage the recently discovered theory of discrete second integrals to show novel results about Runge-Kutta methods. In particular, we show that any Runge-Kutta method preserves all affine second integrals but cannot preserve all quadratic second integrals of an ODE. A number of interesting corollaries are also discussed, such as the preservation of certain rational in-tegrals by Runge-Kutta methods. The special case of affine second integrals with constant cofactor are also discussed as well the preservation of third and higher integrals.
引用
收藏
页码:304 / 322
页数:19
相关论文
共 50 条
  • [1] Approximate preservation of quadratic first integrals by explicit Runge-Kutta methods
    Calvo, M.
    Laburta, M. P.
    Montijano, J. I.
    Randez, L.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 32 (03) : 255 - 274
  • [2] Volume preservation by Runge-Kutta methods
    Bader, Philipp
    McLaren, David I.
    Quispel, G. R. W.
    Webb, Marcus
    APPLIED NUMERICAL MATHEMATICS, 2016, 109 : 123 - 137
  • [3] On the Preservation of Lyapunov Functions by Runge-Kutta Methods
    Calvo, M.
    Laburta, M. P.
    Montijano, J. I.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 735 - 738
  • [4] On the preservation of invariants by explicit Runge-Kutta methods
    Calvo, M.
    Hernandez-Abreu, D.
    Montijano, J. I.
    Randez, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 868 - 885
  • [5] Structure preservation of exponentially fitted Runge-Kutta methods
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 421 - 434
  • [6] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326
  • [7] THE RUNGE-KUTTA METHODS
    THOMAS, B
    BYTE, 1986, 11 (04): : 191 - &
  • [8] LINEARLY-IMPLICIT RUNGE-KUTTA METHODS BASED ON IMPLICIT RUNGE-KUTTA METHODS
    BRUDER, J
    APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) : 33 - 40
  • [9] REDUCIBLE RUNGE-KUTTA METHODS
    COOPER, GJ
    BIT, 1985, 25 (04): : 675 - 680
  • [10] Multiplicative runge-kutta methods
    Aniszewska, Dorota
    NONLINEAR DYNAMICS, 2007, 50 (1-2) : 265 - 272