BS3LNet: A New Blind-Spot Self-Supervised Learning Network for Hyperspectral Anomaly Detection

被引:109
|
作者
Gao, Lianru [1 ]
Wang, Degang [1 ,2 ]
Zhuang, Lina [1 ]
Sun, Xu [1 ]
Huang, Min [1 ,3 ]
Plaza, Antonio [4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
[4] Univ Extremadura, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Escuela Politecn, Caceres 10003, Spain
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Image reconstruction; Task analysis; Hyperspectral imaging; Feature extraction; Training; Image restoration; Supervised learning; Deep learning (DL); hyperspectral image (HSI); image reconstruction; neural network; TARGET DETECTION; COLLABORATIVE REPRESENTATION; LOW-RANK; ALGORITHM;
D O I
10.1109/TGRS.2023.3246565
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recent years have witnessed the flourishing of deep learning-based methods in hyperspectral anomaly detection (HAD). However, the lack of available supervision information persists throughout. In addition, existing unsupervised learning/semisupervised learning methods to detect anomalies utilizing reconstruction errors not only generate backgrounds but also reconstruct anomalies to some extent, complicating the identification of anomalies in the original hyperspectral image (HSI). In order to train a network able to reconstruct only background pixels (instead of anomalous pixels), in this article, we propose a new blind-spot self-supervised learning network (called BS(3)LNet) that generates training patch pairs with blind spots from a single HSI and trains the network in self-supervised fashion. The BS(3)LNet tends to generate high reconstruction errors for anomalous pixels and low reconstruction errors for background pixels due to the fact that it adopts a blind-spot architecture, i.e., the receptive field of each pixel excludes the pixel itself and the network reconstructs each pixel using its neighbors. The above characterization suits the HAD task well, considering the fact that spectral signatures of anomalous targets are significantly different from those of neighboring pixels. Our network can be considered a superb background generator, which effectively enhances the semantic feature representation of the background distribution and weakens the feature expression for anomalies. Meanwhile, the differences between the original HSI and the background reconstructed by our network are used to measure the degree of the anomaly of each pixel so that anomalous pixels can be effectively separated from the background. Extensive experiments on two synthetic and three real datasets reveal that our BS(3)LNet is competitive with regard to other state-of-the-art approaches.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] AP-BSN: Self-Supervised Denoising for Real-World Images via Asymmetric PD and Blind-Spot Network
    Lee, Wooseok
    Son, Sanghyun
    Lee, Kyoung Mu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17704 - 17713
  • [22] HYPERSPECTRAL IMAGE CHANGE DETECTION BY SELF-SUPERVISED TENSOR NETWORK
    Zhou, Feng
    Chen, Zhao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2527 - 2530
  • [23] Hyperspectral target detection using self-supervised background learning
    Ali, Muhammad Khizer
    Amin, Benish
    Maud, Abdur Rahman
    Bhatti, Farrukh Aziz
    Sukhia, Komal Nain
    Khurshid, Khurram
    ADVANCES IN SPACE RESEARCH, 2024, 74 (02) : 628 - 646
  • [24] Self-supervised Complex Network for Machine Sound Anomaly Detection
    Kim, Miseul
    Minh Tri Ho
    Kang, Hong-Goo
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 586 - 590
  • [25] SELF-SUPERVISED CONFIDENT LEARNING FOR HYPERSPECTRAL IMAGE CHANGE DETECTION
    Wu, Haonan
    Chen, Zhao
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [26] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233
  • [27] Classification-Based Self-Supervised Learning for Anomaly Detection
    Li, Honghu
    Zhu, Yuesheng
    He, Ying
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [28] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [29] CADet: Fully Self-Supervised Anomaly Detection With Contrastive Learning
    Guille-Escuret, Charles
    Rodriguez, Pau
    Vazquez, David
    Mitliagkas, Ioannis
    Monteiro, Joao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [30] Deep anomaly detection with self-supervised learning and adversarial training
    Zhang, Xianchao
    Mu, Jie
    Zhang, Xiaotong
    Liu, Han
    Zong, Linlin
    Li, Yuangang
    PATTERN RECOGNITION, 2022, 121