An Unsupervised Saliency-Guided Deep Convolutional Neural Network for Accurate Burn Mapping from Sentinel-1 SAR Data

被引:3
作者
Radman, Ali [1 ]
Shah-Hosseini, Reza [1 ]
Homayouni, Saeid [2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran 1417466191, Iran
[2] Inst Natl Rech Sci, Ctr Eau Terre Environm, 490 Rue Couronne, Quebec City, PQ G1K 9A9, Canada
关键词
deep learning; synthetic aperture radar (SAR); unsupervised; convolutional neural network; burn mapping; AREA DETECTION; IMAGE; SENSITIVITY; ALGORITHM; SEVERITY; MODEL;
D O I
10.3390/rs15051184
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
SAR data provide sufficient information for burned area detection in any weather condition, making it superior to optical data. In this study, we assess the potential of Sentinel-1 SAR images for precise forest-burned area mapping using deep convolutional neural networks (DCNN). Accurate mapping with DCNN techniques requires high quantity and quality training data. However, labeled ground truth might not be available in many cases or requires professional expertise to generate them via visual interpretation of aerial photography or field visits. To overcome this problem, we proposed an unsupervised method that derives DCNN training data from fuzzy c-means (FCM) clusters with the highest and lowest probability of being burned. Furthermore, a saliency-guided (SG) approach was deployed to reduce false detections and SAR image speckles. This method defines salient regions with a high probability of being burned. These regions are not affected by noise and can improve the model performance. The developed approach based on the SG-FCM-DCNN model was investigated to map the burned area of Rossomanno-Grottascura-Bellia, Italy. This method significantly improved the burn detection ability of non-saliency-guided models. Moreover, the proposed model achieved superior accuracy of 87.67% (i.e., more than 2% improvement) compared to other saliency-guided techniques, including SVM and DNN.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Soil Moisture Retrieval Using Sail Squirrel Search Optimization-based Deep Convolutional Neural Network with Sentinel-1 Images
    Preetham, Anusha
    Battu, Vishnu Vardhan
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (05)
  • [32] A Novel Method for Automated Supraglacial Lake Mapping in Antarctica Using Sentinel-1 SAR Imagery and Deep Learning
    Dirscherl, Mariel
    Dietz, Andreas J.
    Kneisel, Christof
    Kuenzer, Claudia
    REMOTE SENSING, 2021, 13 (02) : 1 - 27
  • [33] Paddy Rice Mapping in Hainan Island Using Time-Series Sentinel-1 SAR Data and Deep Learning
    Shen, Guozhuang
    Liao, Jingjuan
    REMOTE SENSING, 2025, 17 (06)
  • [34] Unsupervised domain adaptation for global urban extraction using Sentinel-1 SAR and Sentinel-2 MSI data
    Hafner, Sebastian
    Ban, Yifang
    Nascetti, Andrea
    REMOTE SENSING OF ENVIRONMENT, 2022, 280
  • [35] Change Detection from SAR Images Based on Convolutional Neural Networks Guided by Saliency Enhancement
    Li, Liangliang
    Ma, Hongbing
    Jia, Zhenhong
    REMOTE SENSING, 2021, 13 (18)
  • [36] Extraction of Sea Ice Cover by Sentinel-1 SAR Based on Support Vector Machine With Unsupervised Generation of Training Data
    Li, Xiao-Ming
    Sun, Yan
    Zhang, Qiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3040 - 3053
  • [37] Attention-Guided Convolution Neural Network Assisted With Handcrafted Features for Ship Classification in Low-Resolution Sentinel-1 SAR Image Data
    Bhattacharjee, Shovakar
    Shanmugam, Palanisamy
    Das, Sukhendu
    IEEE ACCESS, 2024, 12 (48668-48685) : 48668 - 48685
  • [38] Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
    Dey, Subhadip
    Bhogapurapu, Narayanarao
    Homayouni, Saeid
    Bhattacharya, Avik
    McNairn, Heather
    REMOTE SENSING, 2021, 13 (21)
  • [39] OmbriaNet-Supervised Flood Mapping via Convolutional Neural Networks Using Multitemporal Sentinel-1 and Sentinel-2 Data Fusion
    Drakonakis, Georgios, I
    Tsagkatakis, Grigorios
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2341 - 2356
  • [40] Retrieving Ocean Surface Winds and Waves from Augmented Dual-Polarization Sentinel-1 SAR Data Using Deep Convolutional Residual Networks
    Xue, Sihan
    Meng, Lingsheng
    Geng, Xupu
    Sun, Haiyang
    Edwing, Deanna
    Yan, Xiao-Hai
    ATMOSPHERE, 2023, 14 (08)