Optimal Deep Transfer Learning Based Colorectal Cancer Detection and Classification Model

被引:4
作者
Ragab, Mahmoud [1 ,2 ,3 ]
Mahmoud, Maged Mostafa [4 ,5 ,6 ]
Asseri, Amer H. [2 ]
Choudhry, Hani [2 ,7 ]
Yacoub, Haitham A. [8 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Informat Technol Dept, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Ctr Artificial Intelligence Precis Med, Jeddah 21589, Saudi Arabia
[3] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Cairo, Egypt
[4] King Abdulaziz Univ, King Fahd Med Res Ctr, Canc Biol Unit, Jeddah 21589, Saudi Arabia
[5] King Abdulaziz Univ, Fac Appl Med Sci, Dept Med Lab Sci, Jeddah 22252, Saudi Arabia
[6] Natl Res Ctr, Human Genet & Genome Res Inst, Dept Mol Genet & Enzymol, Cairo 12622, Egypt
[7] King Abdulaziz Univ, Fac Sci, Biochem Dept, Jeddah 21589, Saudi Arabia
[8] Natl Res Ctr, Biotechnol Res Inst, Cell Biol Dept, Giza 12622, Egypt
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 02期
关键词
Colorectal cancer; deep transfer learning; slime mould algorithm; hyperparameter optimization; biomedical imaging;
D O I
10.32604/cmc.2023.031037
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Colorectal carcinoma (CRC) is one such dispersed cancer globally and also prominent one in causing cancer-based death. Conventionally, pathologists execute CRC diagnosis through visible scrutinizing under the microscope the resected tissue samples, stained and fixed through Haematoxylin and Eosin (H&E). The advancement of graphical processing systems has resulted in high potentiality for deep learning (DL) techniques in interpretating visual anatomy from high resolution medical images. This study develops a slime mould algorithm with deep transfer learning enabled colorectal cancer detection and classification (SMADTL-CCDC) algorithm. The presented SMADTL-CCDC technique intends to appropriately recog-nize the occurrence of colorectal cancer. To accomplish this, the SMADTL-CCDC model initially undergoes pre-processing to improve the input image quality. In addition, a dense-EfficientNet technique was employed to extract feature vectors from the pre-processed images. Moreover, SMA with Discrete Hopfield neural network (DHNN) method was applied for the recognition and classification of colorectal cancer. The utilization of SMA assists in appropriately selecting the parameters involved in the DHNN approach. A wide range of experiments was implemented on benchmark datasets to assess the classification performance. A comprehensive comparative study highlighted the better performance of the SMADTL-CDC model over the recent approaches.
引用
收藏
页码:3279 / 3295
页数:17
相关论文
共 23 条
[1]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[2]   An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm [J].
Dhawale, Dinesh ;
Kamboj, Vikram Kumar ;
Anand, Priyanka .
ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 4) :2739-2777
[3]   A New Deep Learning Model Selection Method for Colorectal Cancer Classification [J].
Dif, Nassima ;
Elberrichi, Zakaria .
INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2020, 11 (03) :72-88
[4]   Automated Deep Learning Empowered Breast Cancer Diagnosis Using Biomedical Mammogram Images [J].
Escorcia-Gutierrez, Jose ;
Mansour, Romany F. ;
Beleno, Kelvin ;
Jimenez-Cabas, Javier ;
Perez, Meglys ;
Madera, Natasha ;
Velasquez, Kevin .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03) :4221-4235
[5]   A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer [J].
Ho, Cowan ;
Zhao, Zitong ;
Chen, Xiu Fen ;
Sauer, Jan ;
Saraf, Sahil Ajit ;
Jialdasani, Rajasa ;
Taghipour, Kaveh ;
Sathe, Aneesh ;
Khor, Li-Yan ;
Lim, Kiat-Hon ;
Leow, Wei-Qiang .
SCIENTIFIC REPORTS, 2022, 12 (01)
[6]   Application on Online Process Learning Evaluation Based on Optimal Discrete Hopfield Neural Network and Entropy Weight TOPSIS Method [J].
Hu, Chuanshuang ;
Ma, Yongmei ;
Chen, Ting .
COMPLEXITY, 2021, 2021
[7]   Multi-class texture analysis in colorectal cancer histology [J].
Kather, Jakob Nikolas ;
Weis, Cleo-Aron ;
Bianconi, Francesco ;
Melchers, Susanne M. ;
Schad, Lothar R. ;
Gaiser, Timo ;
Marx, Alexander ;
Zoellner, Frank Gerrit .
SCIENTIFIC REPORTS, 2016, 6
[8]   Optimal deep learning model for classification of lung cancer on CT images [J].
Lakshmanaprabu, S. K. ;
Mohanty, Sachi Nandan ;
Shankar, K. ;
Arunkumar, N. ;
Ramirez, Gustavo .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 92 :374-382
[9]   Instant Edit Propagation on Images Based on Bilateral Grid [J].
Li, Feng ;
Ou, Chaofeng ;
Gui, Yan ;
Xiang, Lingyun .
CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (02) :643-656
[10]   Feature Extension of Gut Microbiome Data for Deep Neural Network-Based Colorectal Cancer Classification [J].
Mulenga, Mwenge ;
Kareem, Sameem Abdul ;
Sabri, Aznul Qalid Md ;
Seera, Manjeevan ;
Govind, Suresh ;
Samudi, Chandramathi ;
Bin Mohamad, Saharuddin .
IEEE ACCESS, 2021, 9 :23565-23578