Automated multi-beat tissue Doppler echocardiography analysis using deep neural networks

被引:3
|
作者
Lane, Elisabeth S. [1 ]
Jevsikov, Jevgeni [1 ]
Shun-shin, Matthew J. [2 ]
Dhutia, Niti [3 ]
Matoorian, Nasser [1 ]
Cole, Graham D. [2 ]
Francis, Darrel P. [2 ]
Zolgharni, Massoud [1 ,2 ]
机构
[1] Univ West London, Sch Comp & Engn, St Marys Rd, London W5 5RF, England
[2] Imperial Coll, Natl Heart & Lung Inst, London, England
[3] New York Univ Abu Dhabi, Abu Dhabi, U Arab Emirates
关键词
Tissue Doppler echocardiography; Object detection; Landmark localisation; Cardiac imaging; Deep learning; VENTRICULAR DIASTOLIC FUNCTION; AMERICAN-SOCIETY; PROGNOSTIC VALUE; VELOCITY; RECOMMENDATIONS; SEGMENTATION; MOTION;
D O I
10.1007/s11517-022-02753-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Tissue Doppler imaging is an essential echocardiographic technique for the non-invasive assessment of myocardial blood velocity. Image acquisition and interpretation are performed by trained operators who visually localise landmarks representing Doppler peak velocities. Current clinical guidelines recommend averaging measurements over several heartbeats. However, this manual process is both time-consuming and disruptive to workflow. An automated system for accurate beat isolation and landmark identification would be highly desirable. A dataset of tissue Doppler images was annotated by three cardiologist experts, providing a gold standard and allowing for observer variability comparisons. Deep neural networks were trained for fully automated predictions on multiple heartbeats and tested on tissue Doppler strips of arbitrary length. Automated measurements of peak Doppler velocities show good Bland-Altman agreement (average standard deviation of 0.40 cm/s) with consensus expert values; less than the inter-observer variability (0.65 cm/s). Performance is akin to individual experts (standard deviation of 0.40 to 0.75 cm/s). Our approach allows for > 26 times as many heartbeats to be analysed, compared to a manual approach. The proposed automated models can accurately and reliably make measurements on tissue Doppler images spanning several heartbeats, with performance indistinguishable from that of human experts, but with significantly shorter processing time.
引用
收藏
页码:911 / 926
页数:16
相关论文
共 50 条
  • [31] Image Texture Analysis Using Deep Neural Networks
    Gunasekara, P. G. H. H.
    Wijayakulasooriya, J. V.
    Dharmagunawardhana, H. A. C.
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2017, : 170 - 174
  • [32] Automated analysis of fetal cardiac function using color tissue Doppler imaging
    Herling, L.
    Johnson, J.
    Ferm-Widlund, K.
    Bergholm, F.
    Lindgren, P.
    Sonesson, S. -E.
    Acharya, G.
    Westgren, M.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2018, 52 (05) : 599 - 608
  • [33] Automated Mobile Image Acquisition of Skin Wounds Using Real-Time Deep Neural Networks
    Faria, Jose
    Almeida, Joao
    Vasconcelos, Maria Joao M.
    Rosado, Luis
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2019, 2020, 1065 : 61 - 73
  • [34] Automated Colorectal Polyp Classification Using Deep Neural Networks with Colonoscopy Images
    Dima Taha
    Ahmad Alzu’bi
    Abdelrahman Abuarqoub
    Mohammad Hammoudeh
    Mohamed Elhoseny
    International Journal of Fuzzy Systems, 2022, 24 : 2525 - 2537
  • [35] Automated identification and grading system of diabetic retinopathy using deep neural networks
    Zhang, Wei
    Zhong, Jie
    Yang, Shijun
    Gao, Zhentao
    Hu, Junjie
    Chen, Yuanyuan
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2019, 175 : 12 - 25
  • [36] Facial image analysis for automated suicide risk detection with deep neural networks
    Rashed, Amr E. Eldin
    Atwa, Ahmed E. Mansour
    Ahmed, Ali
    Badawy, Mahmoud
    Elhosseini, Mostafa A.
    Bahgat, Waleed M.
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (10)
  • [37] Automated assessment of transthoracic echocardiogram image quality using deep neural networks
    Labs, Robert B.
    Vrettos, Apostolos
    Loo, Jonathan
    Zolgharni, Massoud
    INTELLIGENT MEDICINE, 2023, 3 (03): : 191 - 199
  • [38] Automated Colorectal Polyp Classification Using Deep Neural Networks with Colonoscopy Images
    Taha, Dima
    Alzu'bi, Ahmad
    Abuarqoub, Abdelrahman
    Hammoudeh, Mohammad
    Elhoseny, Mohamed
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2022, 24 (05) : 2525 - 2537
  • [39] Automated analysis of radiology images using Convolutional Neural Networks
    Katona, Tamas
    Antal, Balint
    PROCEEDINGS OF THE 2019 11TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2019), 2019, : 89 - 92
  • [40] Functional data analysis using deep neural networks
    Wang, Shuoyang
    Zhang, Wanyu
    Cao, Guanqun
    Huang, Yuan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (04):