Redox flow batteries: Mitigating cross-contamination via bipolar redox-active materials and bipolar membranes

被引:16
作者
Chen, Ruiyong [1 ,2 ,3 ]
机构
[1] Univ Liverpool, Dept Chem, Liverpool L7 3NY, England
[2] Saarland Univ, Dept Chem, D-66123 Saarbrucken, Germany
[3] Korea Inst Sci & Technol KIST Europe, D-66123 Saarbrucken, Germany
关键词
Energy storage Redox flow batteries Bipolar redox-active materials; Bipolar membranes Redox-active organic materials Aqueous acid; base redox flow batteries; ELECTROCHEMICAL CHARACTERIZATION; ELECTROLYTE;
D O I
10.1016/j.coelec.2022.101188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of post-vanadium electrolytes using abundant materials with versatile redox chemistries will enable costeffective energy storage and widespread implementation of redox flow batteries (RFBs). However, performance-loss due to cross-contamination of catholyte/anolyte in the membranebased RFBs becomes a technological hurdle toward long-term cyclability. To tackle such challenge, new materials chemistry and cell chemistry have been demonstrated. A promising class of bipolar redox-active materials emerges, which permits the use of the same electrolyte in both half-cells and can ultimately solve the detrimental cross-contamination. In addition, new cell configuration, by using bipolar membranes with stacked anionand cation-selective layers, is developed to suppress the crosscontamination through the Donnan-exclusion effect. Here, an overview of the most recent advances in bipolar redox-active materials and bipolar membranes for RFBs is provided.
引用
收藏
页数:7
相关论文
共 55 条
[1]   Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures [J].
Ai, Fei ;
Wang, Zengyue ;
Lai, Nien-Chu ;
Zou, Qingli ;
Liang, Zhuojian ;
Lu, Yi-Chun .
NATURE ENERGY, 2022, 7 (05) :417-426
[2]   Insights and Challenges for Applying Bipolar Membranes in Advanced Electrochemical Energy Systems [J].
Blommaert, Marijn A. ;
Aili, David ;
Tufa, Ramato Ashu ;
Li, Qingfeng ;
Smith, Wilson A. ;
Vermaas, David A. .
ACS ENERGY LETTERS, 2021, 6 (07) :2539-2548
[3]   Design principles for water dissociation catalysts in high-performance bipolar membranes [J].
Chen, Lihaokun ;
Xu, Qiucheng ;
Oener, Sebastian Z. ;
Fabrizio, Kevin ;
Boettcher, Shannon W. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits [J].
Chen, Ruiyong .
CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (01)
[5]   A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids [J].
Chen, Ruiyong ;
Bresser, Dominic ;
Saraf, Mohit ;
Gerlach, Patrick ;
Balducci, Andrea ;
Kunz, Simon ;
Schroeder, Daniel ;
Passerini, Stefano ;
Chen, Jun .
CHEMSUSCHEM, 2020, 13 (09) :2205-2219
[6]   Ionic liquid-mediated aqueous redox flow batteries for high voltage applications [J].
Chen, Ruiyong ;
Hempelmann, Rolf .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 70 :56-59
[7]   Influence of Hydrotropes on the Solubilities and Diffusivities of Redox-Active Organic Compounds for Aqueous Flow Batteries [J].
Cheng, Yingchi ;
Hall, Derek M. ;
Boualavong, Jonathan ;
Hickey, Robert J. ;
Lvov, Serguei N. ;
Gorski, Christopher A. .
ACS OMEGA, 2021, 6 (45) :30800-30810
[8]   Thianthrene-Based Bipolar Redox-Active Molecules Toward Symmetric All-Organic Batteries [J].
Etkind, Samuel I. ;
Lopez, Jeffrey ;
Zhu, Yun Guang ;
Fang, Jen-Hung ;
Ong, Wen Jie ;
Shao-Horn, Yang ;
Swager, Timothy M. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (36) :11739-11750
[9]   Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries [J].
Feng, Ruozhu ;
Zhang, Xin ;
Murugesan, Vijayakumar ;
Holias, Aaron ;
Chen, Ying ;
Shao, Yuyan ;
Walter, Eric ;
Wellala, Nadeesha P. N. ;
Yan, Litao ;
Rosso, Kevin M. ;
Wang, Wei .
SCIENCE, 2021, 372 (6544) :836-+
[10]   Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries [J].
Fornari, Rocco Peter ;
Mesta, Murat ;
Hjelm, Johan ;
Vegge, Tejs ;
de Silva, Piotr .
ACS MATERIALS LETTERS, 2020, 2 (03) :239-246