Learning performance of uncentered kernel-based principal component analysis
被引:3
作者:
Jiang, Xue
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R ChinaUniv Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
Jiang, Xue
[1
]
Sun, Hong-Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jinan, Sch Math Sci, Shandong Prov Key Lab Network Based Intelligent Co, Jinan 250022, Peoples R ChinaUniv Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
Sun, Hong-Wei
[2
]
机构:
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
[2] Univ Jinan, Sch Math Sci, Shandong Prov Key Lab Network Based Intelligent Co, Jinan 250022, Peoples R China
Principal component analysis (PCA) may be the most popular dimension reduction method. In this paper, the learning scheme of kernel PCA methods is established. Moreover, for the uncentered case, we introduce the error representation, and prove the comparison theorem that the learning error can be bounded by the excess generalization error. Under the condition that the positive eigenvalues of L-K are all single, the satisfied error bound O(n(-1|2)) is deduced.
机构:
Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R ChinaUniv Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
Su, Baoqi
Sun, Hong-Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jinan, Sch Math Sci, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Peoples R ChinaUniv Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
机构:
Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R ChinaUniv Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
Su, Baoqi
Sun, Hong-Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jinan, Sch Math Sci, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Peoples R ChinaUniv Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China