From the vapour-liquid coexistence region to the supercritical fluid: the van der Waals fluid

被引:2
|
作者
Liu, Hongqin [1 ]
机构
[1] Shared Serv Canada, Montreal, PQ, Canada
关键词
Vapor liquid interface; Widom line; density gradient theory; supercritical fluid; mean field theory; INTERFACIAL PROPERTIES; GRADIENT THEORY; WIDOM LINE; SIMULATION; NONUNIFORM;
D O I
10.1080/00268976.2022.2155260
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work the interface system of the van der Waals fluid is investigated by using the density gradient theory incorporated with the mean-field theory. Based on the mean-field dividing interface generated by the Maxwell construction, we propose a highly accurate density profile model for the density gradient theory to facilitate reliable predictions of various properties for the interface region. It is found that the local intrinsic Helmholtz free energy peaks at the interface and that the maximum difference of the normal and tangential components of the pressure tensor corresponds to the maximum of the intrinsic Gibbs free energy. It is also found that the entire phase space is divided into gas-like and liquid-like regions by the single line composed of the mean-field interface and the Widom line. The two-fluid feature of the supercritical fluid is hence inherited from the coexistence region. Phase diagrams extended into the coexistence region in all the temperature-pressure-volume planes are thus completed with the solutions to the vapor-liquid equilibrium problem by the van der Waals equation of state.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Thermodynamic Curvature of the Binary van der Waals Fluid
    Ruppeiner, George
    Seftas, Alex
    ENTROPY, 2020, 22 (11) : 1 - 10
  • [22] Reflection of shock fronts in a van der Waals fluid
    Zhang, Shuyi
    Wang, Yaguang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (06) : 927 - 956
  • [23] Reflection of Shock Fronts in a van der Waals Fluid
    Shuyi ZHANG
    Yaguang WANG
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (06) : 927 - 956
  • [24] The van der Waals fluid and its role in cosmology
    Jantsch, Rudinei C. S.
    Christmann, Marcus H. B.
    Kremer, Gilberto M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (03):
  • [25] Droplet Evaporation to Boiling in Van Der Waals Fluid
    Xiong Hongbing
    Wang Qichao
    Zhang Chengyu
    Wang Huigang
    Lin Jianzhong
    JOURNAL OF THERMAL SCIENCE, 2022, 31 (03) : 790 - 801
  • [26] Droplet Evaporation to Boiling in Van Der Waals Fluid
    XIONG Hongbing
    WANG Qichao
    ZHANG Chengyu
    WANG Huigang
    LIN Jianzhong
    JournalofThermalScience, 2022, 31 (03) : 790 - 801
  • [27] Droplet Evaporation to Boiling in Van Der Waals Fluid
    Hongbing Xiong
    Qichao Wang
    Chengyu Zhang
    Huigang Wang
    Jianzhong Lin
    Journal of Thermal Science, 2022, 31 : 790 - 801
  • [28] MODIFIED CARNAHAN-STARLING-VAN DER WAALS EQUATION FOR SUPERCRITICAL FLUID EXTRACTION.
    Bertucco, A.
    Fermeglia, M.
    Kikic, I.
    1600, (32):
  • [29] Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number
    Battista, F.
    Picano, F.
    Casciola, C. M.
    PHYSICS OF FLUIDS, 2014, 26 (05)
  • [30] van der Waals equation of state for a fluid in a nanopore
    Zarragoicoechea, GJ
    Kuz, VA
    PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 021110