Hamiltonicity of graphs perturbed by a random regular graph

被引:2
作者
Diaz, Alberto Espuny [1 ]
Girao, Antonio [2 ]
机构
[1] Tech Univ Ilmenau, Inst Math, Ilmenau, Germany
[2] Univ Oxford, Math Inst, Oxford, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Hamiltonicity; pancyclicity; randomly perturbed graphs; random regular graphs; RANDOM EDGES;
D O I
10.1002/rsa.21122
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study Hamiltonicity and pancyclicity in the graph obtained as the union of a deterministic n$$ n $$-vertex graph H$$ H $$ with delta(H)>=alpha n$$ \delta (H)\ge \alpha n $$ and a random d$$ d $$-regular graph G$$ G $$, for d is an element of{1,2}$$ d\in \left\{1,2\right\} $$. When G$$ G $$ is a random 2-regular graph, we prove that a.a.s. H?G$$ H\cup G $$ is pancyclic for all alpha is an element of(0,1]$$ \alpha \in \left(0,1\right] $$, and also extend our result to a range of sublinear degrees. When G$$ G $$ is a random 1-regular graph, we prove that a.a.s. H?G$$ H\cup G $$ is pancyclic for all alpha is an element of(2-1,1]$$ \alpha \in \left(\sqrt{2}-1,1\right] $$, and this result is best possible. Furthermore, we show that this bound on delta(H)$$ \delta (H) $$ is only needed when H$$ H $$ is "far" from containing a perfect matching, as otherwise we can show results analogous to those for random 2-regular graphs. Our proofs provide polynomial-time algorithms to find cycles of any length.
引用
收藏
页码:857 / 886
页数:30
相关论文
共 31 条
  • [1] A threshold result for loose Hamiltonicity in random regular uniform hypergraphs
    Altman, Daniel
    Greenhill, Catherine
    Isaev, Mikhail
    Ramadurai, Reshma
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 142 : 307 - 373
  • [2] High powers of Hamiltonian cycles in randomly augmented graphs
    Antoniuk, Sylwia
    Dudek, Andrzej
    Reiher, Christian
    Rucinski, Andrzej
    Schacht, Mathias
    [J]. JOURNAL OF GRAPH THEORY, 2021, 98 (02) : 255 - 284
  • [3] Tilings in Randomly Perturbed Dense Graphs
    Balogh, Jozsef
    Treglown, Andrew
    Wagner, Adam Zsolt
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (02) : 159 - 176
  • [4] Powers of tight Hamilton cycles in randomly perturbed hypergraphs
    Bedenknecht, Wiebke
    Han, Jie
    Kohayakawa, Yoshiharu
    Mota, Guilherme O.
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (04) : 795 - 807
  • [5] Cycle factors in randomly perturbed graphs
    Boettcher, Julia
    Parczyk, Olaf
    Sgueglia, Amedeo
    Skokan, Jozef
    [J]. PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 404 - 411
  • [6] Universality for bounded degree spanning trees in randomly perturbed graphs
    Boettcher, Julia
    Han, Jie
    Kohayakawa, Yoshiharu
    Montgomery, Richard
    Parczyk, Olaf
    Person, Yury
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (04) : 854 - 864
  • [7] How many random edges make a dense graph hamiltonian?
    Bohman, T
    Frieze, A
    Martin, R
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (01) : 33 - 42
  • [8] Bollobas B., 1980, EUR J COMBIN, V1, P311, DOI DOI 10.1016/S0195-6698(80)80030-8
  • [9] Bottcher J., 2022, ARXIV
  • [10] Triangles in randomly perturbed graphs
    Bottcher, Julia
    Parczyk, Olaf
    Sgueglia, Amedeo
    Skokan, Jozef
    [J]. COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (01) : 91 - 121