Thermodynamic and Economic Analysis of a Conceptual System Combining Sludge Gasification, SOFC, Supercritical CO2 Cycle, and Organic Rankine Cycle

被引:1
|
作者
Lv, Jiayang [1 ]
Wang, Chizhong [1 ]
Chen, Heng [1 ]
Pan, Peiyuan [1 ]
Xu, Gang [1 ]
Zhang, Guoqiang [1 ]
机构
[1] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
sewage sludge gasifier; SOFC; supercritical CO2 cycle; organic Rankine cycle; multi-system coupling; OXIDE FUEL-CELL; SEWAGE-SLUDGE; POWER; PERFORMANCE; PLANT; GAS;
D O I
10.1007/s11630-024-1932-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
To solve the environmental problems associated with municipal sludge incineration and landfilling, a combined cooling, heating, and power (CCHP) system integrating plasma gasification, solid oxide fuel cell (SOFC), gas turbine, supercritical carbon dioxide (S-CO2) cycle, and double-effect absorption refrigeration cycle (ARC) is proposed. Additionally, the CO2 generated in the system is captured to reduce the environmental impact. Energy, exergy, and sensitivity analyses of the developed system are conducted. Key parameters such as the SOFC temperature, SOFC pressure, and fuel utilization rate affecting the system performance are studied. The results show that net electrical efficiencies of the SOFC and the system are 41.96 % and 50.00 %, respectively. The exergy efficiency and comprehensive energy utilization rate of the system are 47.04 % and 87.59 %, respectively. The system can generate a power of 175.03 kW, cooling of 45.70 kW, and heating of 85.82 kW under the design conditions, accounting for 67.46 %, 21.23 %, and 11.31 % total energy output of system, respectively. The three main sources of exergy destruction of the system are the plasma gasification, SOFC, and supercritical CO2 cycle subsystems, accounting for 36.8 %, 12.2 %, and 10.7 % exergy destruction, respectively. The system performs the best when the SOFC temperature is 910 degrees C and the fuel utilization rate is between 0.85 and 0.90. The SOFC pressure has little effect on the system performance. In addition, the carbon capture rate of the system can reach 97.50 %. The CCHP system has high thermodynamic efficiency and hence can convert municipal sludge efficiently into clean energy; therefore, this study provides a new concept for resource treatment of urban sludge.
引用
收藏
页码:1491 / 1508
页数:18
相关论文
共 50 条
  • [41] System design and thermodynamic analysis of a sintering-driven organic Rankine cycle
    Liu, Yan
    Cheng, Zhilong
    Wang, Jingyu
    Yang, Jian
    Wang, Qiuwang
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 1467 - 1472
  • [42] Thermodynamic Analysis and Economic Assessment of Organic Rankine Cycle Integrated with Thermoelectric Generator Onboard Container Ship
    Elkafas, Ahmed G.
    PROCESSES, 2024, 12 (02)
  • [43] Performance evaluation of solar based combined pre-compression supercritical CO2 cycle and organic Rankine cycle
    Khan, Yunis
    Mishra, Radhey Shyam
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2021, 18 (02) : 172 - 186
  • [44] Performance analysis of solar parabolic trough collectors driven combined supercritical CO2 and organic Rankine cycle
    Singh, Harwinder
    Mishra, R. S.
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2018, 21 (03): : 451 - 464
  • [45] Thermodynamic and economic analysis of an off-grid photovoltaic hydrogen production system hybrid with organic Rankine cycle
    Li, Qingshan
    Hua, Qingsong
    Wang, Chenfang
    Khosravi, Ali
    Sun, Li
    APPLIED THERMAL ENGINEERING, 2023, 230
  • [46] Techno-economic optimization of a biomass gasification energy system with Supercritical CO2 cycle for hydrogen fuel and electricity production
    Soltani, Mohammad Mohsen
    Ahmadi, Pouria
    Ashjaee, Mehdi
    FUEL, 2023, 333
  • [47] Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle
    Pierobon, Leonardo
    Rokni, Masoud
    Larsen, Ulrik
    Haglind, Fredrik
    RENEWABLE ENERGY, 2013, 60 : 226 - 234
  • [48] Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle
    Farajollahi, Hossein
    Hossainpour, Siamak
    ENERGY, 2023, 274
  • [49] Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations
    Song, Jian
    Wang, Yaxiong
    Wang, Kai
    Wang, Jiangfeng
    Markides, Christos N.
    RENEWABLE ENERGY, 2021, 174 : 1020 - 1035
  • [50] THERMODYNAMIC INVESTIGATION OF ORGANIC RANKINE CYCLE ENERGY RECOVERY SYSTEM AND RECENT STUDIES
    Boydak, Ozlem
    Ekmekci, Ismail
    Yilmaz, Mustafa
    Koten, Hasan
    THERMAL SCIENCE, 2018, 22 (06): : 2679 - 2690