Spatiotemporal Convolutional Approach for the Short-Term Forecast of Hourly Heavy Rainfall Probability Integrating Numerical Weather Predictions and Surface Observations
被引:0
|
作者:
Liu, Xi
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
Chinese Acad Meteorol Sci, Inst Artificial Intelligence Meteorol, Beijing, Peoples R ChinaNanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
Liu, Xi
[1
,2
,3
]
Zheng, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R ChinaNanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
Zheng, Yu
[1
]
Zhuang, Xiaoran
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Meteorol Observ, Nanjing, Peoples R ChinaNanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
Zhuang, Xiaoran
[4
]
Wang, Yaqiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
Chinese Acad Meteorol Sci, Inst Artificial Intelligence Meteorol, Beijing, Peoples R ChinaNanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
Wang, Yaqiang
[2
,3
]
Li, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R ChinaNanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
Li, Xin
[1
]
Bei, Zhang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R ChinaNanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
Bei, Zhang
[1
]
Zhang, Wenhua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
Chinese Acad Meteorol Sci, Inst Artificial Intelligence Meteorol, Beijing, Peoples R ChinaNanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
Zhang, Wenhua
[2
,3
]
机构:
[1] Nanjing Joint Inst Atmospher Sci, China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing, Peoples R China
[2] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
[3] Chinese Acad Meteorol Sci, Inst Artificial Intelligence Meteorol, Beijing, Peoples R China
[4] Jiangsu Meteorol Observ, Nanjing, Peoples R China
Rainfall;
Nowcasting;
Probability forecasts/models/distribution;
Deep learning;
Machine learning;
PRECIPITATION;
MODELS;
CLIMATE;
RADAR;
D O I:
10.1175/WAF-D-23-0068.1
中图分类号:
P4 [大气科学(气象学)];
学科分类号:
0706 ;
070601 ;
摘要:
The accurate prediction of short-term rainfall, and in particular the forecast of hourly heavy rainfall (HHR) probability, remains challenging for numerical weather prediction (NWP) models. Here, we introduce a deep learning (DL) model, PredRNNv2-AWS, a convolutional recurrent neural network designed for deterministic short-term rainfall forecasting. This model integrates surface rainfall observations and atmospheric variables simulated by the Precision Weather Analysis and Forecasting System (PWAFS). Our DL model produces realistic hourly rainfall forecasts for the next 13 h. Quantitative evaluations show that the use of surface rainfall observations as one of the predictors achieves higher performance (threat score) with 263% and 186% relative improvements over NWP simulations for the first 3 h and the entire forecast hours, respectively, at a threshold of 5 mm h21. Noting that the optical -flow method also performs well in the initial hours, its predictions quickly worsen in the final hours compared to other experiments. The machine learning model, LightGBM, is then integrated to classify HHR from the predicted hourly rainfall of PredRNNv2-AWS. The results show that PredRNNv2-AWS can better reflect actual HHR conditions compared with PredRNNv2 and PWAFS. A representative case demonstrates the superiority of PredRNNv2-AWS in predicting the evolution of the rainy system, which substantially improves the accuracy of the HHR prediction. A test case involving the extreme flood event in Zhengzhou exemplifies the generalizability of our proposed model. Our model offers a reliable framework to predict target variables that can be obtained from numerical simulations and observations, e.g., visibility, wind power, solar energy, and air pollution.
机构:
Guangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou 510510, Peoples R ChinaGuangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou 510510, Peoples R China
Yang, Lanqian
Guo, Jinmin
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaGuangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou 510510, Peoples R China
Guo, Jinmin
Tian, Huili
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou 510510, Peoples R ChinaGuangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou 510510, Peoples R China
Tian, Huili
Liu, Min
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaGuangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou 510510, Peoples R China
Liu, Min
Huang, Chang
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaGuangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou 510510, Peoples R China
Huang, Chang
Cai, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaGuangzhou Power Supply Bur Guangdong Power Grid Co, Guangzhou 510510, Peoples R China
机构:
Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R ChinaNortheast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
Yang, Mao
Han, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R ChinaNortheast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
Han, Chao
Zhang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R ChinaNortheast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
Zhang, Wei
Fang, Guozhong
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Corp China, Northeast Branch, Shenyang 110180, Peoples R ChinaNortheast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
Fang, Guozhong
Jia, Yunpeng
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Power Supply Co State Grid, Grid Jilin Elect Power Co Ltd, Jilin 132011, Peoples R ChinaNortheast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Rene, Minist Educ, Jilin 132012, Peoples R China
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Chinese Acad Meteorol Sci, Inst Artificial Intelligence Meteorol, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Yi, Ziwei
Zeng, Zhaoliang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Chinese Acad Meteorol Sci, Inst Artificial Intelligence Meteorol, Zhongguancun South Ave 46, Beijing 100081, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Zeng, Zhaoliang
Wang, Yaqiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Chinese Acad Meteorol Sci, Inst Artificial Intelligence Meteorol, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Xiongan Inst Meteorol Artificial Intelligence, Xiongan 071799, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Wang, Yaqiang
Li, Weijie
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Chinese Acad Meteorol Sci, Inst Artificial Intelligence Meteorol, Zhongguancun South Ave 46, Beijing 100081, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Li, Weijie
Zhang, Bihui
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Zhang, Bihui
Gui, Hailin
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, Natl Meteorol Ctr, Beijing 100081, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Gui, Hailin
Guo, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200433, Peoples R China
Fudan Univ, Inst Atmospher Sci, Shanghai 200433, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Guo, Bin
Chen, Wencong
论文数: 0引用数: 0
h-index: 0
机构:
Wenzhou Meteorol Bur, Wenzhou 325000, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Chen, Wencong
Che, Huizheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Chinese Acad Meteorol Sci, Key Lab Atmospher Chem CMA, Beijing 100081, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Che, Huizheng
Zhang, Xiaoye
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China
Chinese Acad Meteorol Sci, Key Lab Atmospher Chem CMA, Beijing 100081, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Zhongguancun South Ave 46, Beijing 100081, Peoples R China