Passivator-Assisted Close Space Annealing for High-Performance Wide-Bandgap Perovskite Solar Cells

被引:3
|
作者
Zhao, Yue [1 ,2 ,3 ]
Ma, Tianshu [1 ,2 ,3 ]
Liu, Tingting [1 ,2 ,3 ]
Zhou, Luwei [1 ,2 ,3 ]
Wu, Zhanghao [1 ,2 ,3 ]
Chen, Chen [1 ,2 ,3 ,4 ]
Liu, Yuhui [1 ,2 ,3 ]
Chen, Cong [5 ]
Ma, Dong [6 ]
Qin, Linling [1 ,2 ,3 ]
Zhao, Dewei [4 ,5 ]
Wang, Changlei [1 ,2 ,3 ]
Li, Xiaofeng [1 ,2 ,3 ]
机构
[1] Soochow Univ, Sch Optoelect Sci & Engn, Suzhou 215006, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Key Lab Adv Opt Mfg Technol Jiangsu Prov, Suzhou 215006, Peoples R China
[3] Soochow Univ, Key Lab Modern Opt Technol, Educ Minist China, Suzhou 215006, Peoples R China
[4] Sichuan Univ, Coll Mat Sci & Engn, Minist Educ, Chengdu 610065, Peoples R China
[5] Sichuan Univ, Inst New Energyand Low & Carbon Technol, Engn Res Ctr Alternat Energy Mat & Devices, Ministry Educ, Chengdu 610065, Peoples R China
[6] Soochow Univ, Sch Rail Transportat, Suzhou 215137, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
all-perovskite tandem solar cells; close space annealings; defect passivations; perovskite solar cells; METAL HALIDE PEROVSKITES; EFFICIENCY; ENHANCEMENT;
D O I
10.1002/solr.202301016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wide-bandgap perovskite solar cells (PSCs) play crucial roles in determining the overall efficiencies of all-perovskite tandem solar cells (TSCs). Tailoring the grain growth process is a key route to improve the film quality and device performance. Herein, a facile passivator-assisted close space annealing (PA-CSA) strategy to simultaneously enlarge the crystal size and passivate the defects is demonstrated. Filter paper is used as the solvent permeable membrane to slow down the fast crystallization and enlarge the grain size. At the same time, a precisely selected volatile material (fluorizated-phenethylammonium chloride) embedded in the filter paper is employed as the passivator to eliminate defects in wide-Eg perovskite film during annealing. The PA-CSA-processed wide-Eg PSCs obtain the champion efficiencies of 21.28% (1.68 eV) and 20.24% (1.73 eV), enabling high-performance all-perovskite TSCs with efficiencies reaching 27% in both four-terminal and monolithic two-terminal tandem configurations, respectively. This PA-CSA strategy provides an in situ passivating process for high-performance PSCs and TSCs upon further industrial applications. A facile passivator-assisted close space annealing strategy is proposed to simultaneously enlarge the grain size and passivation the defects through in situ sublimation of the passivators, leading to high-performance wide-bandgap perovskite solar cells and all-perovskite tandem solar cells.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Buried organic interlayer for high-performance and stable wide-bandgap perovskite solar cells
    Kim, Haeun
    Lee, Soo Yeon
    Park, Hansol
    Heo, Jihyeon
    Kim, Hakjun
    Kim, Yoonsung
    Prayogo, Juan Anthony
    Kim, Young-Hoon
    Whang, Dong Ryeol
    Chang, Dong Wook
    Park, Hui Joon
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [2] Wide-bandgap space solar cells
    Merritt, D
    Houlihan, S
    Raffaelle, RP
    Landis, GA
    CONFERENCE RECORD OF THE THIRTY-FIRST IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 2005, 2005, : 552 - 555
  • [3] Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
    Lv, Xiaojing
    Li, Weisheng
    Zhang, Jin
    Yang, Yujie
    Jia, Xuefei
    Ji, Yitong
    Lin, Qianqian
    Huang, Wenchao
    Bu, Tongle
    Ren, Zhiwei
    Yao, Canglang
    Huang, Fuzhi
    Cheng, Yi-Bing
    Tong, Jinhui
    JOURNAL OF ENERGY CHEMISTRY, 2024, 93 : 64 - 70
  • [4] Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
    Xiaojing Lv
    Weisheng Li
    Jin Zhang
    Yujie Yang
    Xuefei Jia
    Yitong Ji
    Qianqian Lin
    Wenchao Huang
    Tongle Bu
    Zhiwei Ren
    Canglang Yao
    Fuzhi Huang
    Yi-Bing Cheng
    Jinhui Tong
    Journal of Energy Chemistry, 2024, 93 (06) : 64 - 70
  • [5] Designed multi-layer buffer for high-performance semitransparent wide-bandgap perovskite solar cells
    Lou, Junjie
    Feng, Jiangshan
    Cao, Yang
    Liu, Yucheng
    Qin, Yong
    Liu, Shengzhong
    MATERIALS ADVANCES, 2023, 4 (07): : 1777 - 1784
  • [6] Amino-acid-type alkylamine additive for high-performance wide-bandgap perovskite solar cells
    Nie, Ting
    Yang, Junjie
    Fang, Zhimin
    Xu, Zhuo
    Ren, Xiaodong
    Guo, Xu
    Chen, Tao
    Liu, Shengzhong
    CHEMICAL ENGINEERING JOURNAL, 2023, 468
  • [7] Defect passivation engineering of wide-bandgap perovskites for high-performance solar cells
    Wu, Xiao
    Xiong, Guoqing
    Yue, Ziyao
    Dong, Ziyao
    Cheng, Yuanhang
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (03) : 800 - 813
  • [8] Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells
    Yu, Yue
    Wang, Changlei
    Grice, Corey R.
    Shrestha, Niraj
    Zhao, Dewei
    Liao, Weiqiang
    Guan, Lei
    Awni, Rasha A.
    Meng, Weiwei
    Cimaroli, Alexander J.
    Zhu, Kai
    Ellingson, Randy J.
    Yan, Yanfa
    ACS ENERGY LETTERS, 2017, 2 (05): : 1177 - 1182
  • [9] Suppressing charge recombination in a methylammonium-free wide-bandgap perovskite film for high-performance and stable perovskite solar cells
    Ye, Qiufeng
    Hu, Wenzheng
    Zhu, Junchi
    Cai, Ziyu
    Zhang, Hengkang
    Dong, Tao
    Yu, Boyang
    Chen, Feiyang
    Wei, Xieli
    Yao, Bo
    Dou, Weidong
    Fang, Zebo
    Ye, Feng
    Liu, Zhun
    Li, Tie
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (16) : 5866 - 5875
  • [10] Revealing the Mechanism of π Aromatic Molecule as an Effective Passivator and Stabilizer in Highly Efficient Wide-Bandgap Perovskite Solar Cells
    Liang, Jiwei
    Chen, Cong
    Hu, Xuzhi
    Xiao, Meng
    Wang, Chen
    Yao, Fang
    Li, Jing
    Wang, Haibing
    He, Jingwang
    Da, Bo
    Ding, Zejun
    Ke, Weijun
    Tao, Chen
    Fang, Guojia
    SOLAR RRL, 2021, 5 (08)