Advances in Nitrogen Carriers for Chemical Looping Processes for Sustainable and Carbon-Free Ammonia Synthesis

被引:6
作者
Zhou, Lingfeng [1 ]
Li, Xuemei [1 ]
Li, Qingyuan [2 ]
Kalu, Awa [1 ]
Liu, Cijie [2 ]
Liu, Xingbo [2 ]
Li, Wenyuan [1 ]
机构
[1] West Virginia Univ, Dept Chem & Biochem Engn, Morgantown, WV 26505 USA
[2] West Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26505 USA
来源
ACS CATALYSIS | 2023年 / 13卷 / 22期
关键词
chemical looping; ammonia synthesis; nitrogencarrier; thermodynamics and kinetics; renewableenergy; BIMETALLIC NITRIDE CATALYSTS; AL2O3/ALN THERMOCHEMICAL CYCLE; ATOMIC LAYER DEPOSITION; HYDROGEN STORAGE; METAL NITRIDES; MANGANESE NITRIDE; LOW-PRESSURE; LITHIUM; COBALT; NH3;
D O I
10.1021/acscatal.3c03717
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of ammonia as a hydrogen carrier has generated considerable interest in developing more renewable and long-lasting methods for ammonia production. Collaborative efforts among research institutes, industries, and governments are underway to produce carbon-free ammonia and achieve net-zero emissions by 2050. One largely emerging approach, namely, chemical looping ammonia production (CLAP) with high product selectivity and energy efficiency that utilizes nitrogen carrier materials under atmospheric pressure may greatly reduce this process. Despite recent advancements, several key challenges related to the thermodynamics, kinetics, mechanisms, and environmental impacts of CLAP remain unresolved. This review provides a comprehensive overview of the progression and breakthroughs in this captivating domain, contrasts the properties of nitrogen carriers deployed in assorted CLAP processes alongside thermodynamic and kinetic considerations, and offers insights into the future trajectory of CLAP.
引用
收藏
页码:15087 / 15106
页数:20
相关论文
共 115 条
  • [1] Chemical Looping of Manganese to Synthesize Ammonia at Atmospheric Pressure: Sodium as Promoter
    Aframehr, Wrya Mohammadi
    Huang, Chaoran
    Pfromm, Peter H.
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (10) : 2126 - 2133
  • [2] Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions
    Ahmed, Muhammad Ibrar
    Hibbert, David Brynn
    Zhao, Chuan
    [J]. GREEN ENERGY & ENVIRONMENT, 2023, 8 (06) : 1567 - 1595
  • [3] The Denitridation of Nitrides of Iron, Cobalt and Rhenium Under Hydrogen
    Alexander, A. -M.
    Hargreaves, J. S. J.
    Mitchell, C.
    [J]. TOPICS IN CATALYSIS, 2013, 56 (18-20) : 1963 - 1969
  • [4] The Reduction of Various Nitrides under Hydrogen: Ni3N, Cu3N, Zn3N2 and Ta3N5
    Alexander, A. -M.
    Hargreaves, J. S. J.
    Mitchell, C.
    [J]. TOPICS IN CATALYSIS, 2012, 55 (14-15) : 1046 - 1053
  • [5] A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
    Andersen, Suzanne Z.
    Colic, Viktor
    Yang, Sungeun
    Schwalbe, Jay A.
    Nielander, Adam C.
    McEnaney, Joshua M.
    Enemark-Rasmussen, Kasper
    Baker, Jon G.
    Singh, Aayush R.
    Rohr, Brian A.
    Statt, Michael J.
    Blair, Sarah J.
    Mezzavilla, Stefano
    Kibsgaard, Jakob
    Vesborg, Peter C. K.
    Cargnello, Matteo
    Bent, Stacey F.
    Jaramillo, Thomas F.
    Stephens, Ifan E. L.
    Norskov, Jens K.
    Chorkendorff, Ib
    [J]. NATURE, 2019, 570 (7762) : 504 - +
  • [6] Catalytic conversion of nitrogen to ammonia by an iron model complex
    Anderson, John S.
    Rittle, Jonathan
    Peters, Jonas C.
    [J]. NATURE, 2013, 501 (7465) : 84 - +
  • [7] Arakawa I. T. T., 2002, Patent Application
  • [8] A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia
    Arashiba, Kazuya
    Miyake, Yoshihiro
    Nishibayashi, Yoshiaki
    [J]. NATURE CHEMISTRY, 2011, 3 (02) : 120 - 125
  • [9] High-Throughput Equilibrium Analysis of Active Materials for Solar Thermochemical Ammonia Synthesis
    Bartel, Christopher J.
    Rumptz, John R.
    Weimer, Alan W.
    Holder, Aaron M.
    Musgrave, Charles B.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (28) : 24850 - 24858
  • [10] Aluminum Nitride Hydrolysis Enabled by Hydroxyl-Mediated Surface Proton Hopping
    Bartel, Christopher J.
    Muhich, Christopher L.
    Weimer, Alan W.
    Musgrave, Charles B.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (28) : 18550 - 18559