Deep learning based synthesis of MRI, CT and PET: Review and analysis

被引:68
作者
Dayarathna, Sanuwani [1 ]
Islam, Kh Tohidul [2 ]
Uribe, Sergio [3 ]
Yang, Guang [4 ]
Hayat, Munawar [1 ]
Chen, Zhaolin [1 ,2 ]
机构
[1] Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Clayton, VIC 3800, Australia
[2] Monash Biomed Imaging, Clayton, VIC 3800, Australia
[3] Monash Univ, Fac Med, Dept Med Imaging & Radiat Sci, Clayton, VIC 3800, Australia
[4] Imperial Coll London, Bioengn Dept & Imperial X, London W12 7SL, England
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
Medical image synthesis; Generative deep-learning models; Pseudo-CT; Synthetic MR; Synthetic PET; CONVOLUTIONAL NEURAL-NETWORK; HUMAN CONNECTOME PROJECT; IMAGE SYNTHESIS; GUIDED RADIOTHERAPY; BRAIN MR; GAN; GENERATION; SEGMENTATION; PERFORMANCE;
D O I
10.1016/j.media.2023.103046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image synthesis represents a critical area of research in clinical decision-making, aiming to overcome the challenges associated with acquiring multiple image modalities for an accurate clinical workflow. This approach proves beneficial in estimating an image of a desired modality from a given source modality among the most common medical imaging contrasts, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET). However, translating between two image modalities presents difficulties due to the complex and non-linear domain mappings. Deep learning-based generative modelling has exhibited superior performance in synthetic image contrast applications compared to conventional image synthesis methods. This survey comprehensively reviews deep learning-based medical imaging translation from 2018 to 2023 on pseudo-CT, synthetic MR, and synthetic PET. We provide an overview of synthetic contrasts in medical imaging and the most frequently employed deep learning networks for medical image synthesis. Additionally, we conduct a detailed analysis of each synthesis method, focusing on their diverse model designs based on input domains and network architectures. We also analyse novel network architectures, ranging from conventional CNNs to the recent Transformer and Diffusion models. This analysis includes comparing loss functions, available datasets and anatomical regions, and image quality assessments and performance in other downstream tasks. Finally, we discuss the challenges and identify solutions within the literature, suggesting possible future directions. We hope that the insights offered in this survey paper will serve as a valuable roadmap for researchers in the field of medical image synthesis.
引用
收藏
页数:32
相关论文
共 225 条
[1]   Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis [J].
Abu-Srhan, Alaa ;
Almallahi, Israa ;
Abushariah, Mohammad A. M. ;
Mahafza, Waleed ;
Al-Kadi, Omar S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
[2]  
Almahairi A, 2018, Arxiv, DOI arXiv:1802.10151
[3]   AN IMPROVED DEEP LEARNING FRAMEWORK FOR MR-TO-CT IMAGE SYNTHESIS WITH A NEW HYBRID OBJECTIVE FUNCTION [J].
Ang, Sui Paul ;
Phung, Son Lam ;
Field, Matthew ;
Schira, Mark Matthias .
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
[4]  
Arabi H., 2021, 2021 IEEE NUCL SCI S, DOI [10.1109/nss/mic44867.2021.9875547, DOI 10.1109/NSS/MIC44867.2021.9875547]
[5]   Unsupervised Medical Image Translation Using Cycle-MedGAN [J].
Armanious, Karim ;
Jiang, Chenming ;
Abdulatif, Sherif ;
Kuestner, Thomas ;
Gatidis, Sergios ;
Yang, Bin .
2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
[6]   MedGAN: Medical image translation using GANs [J].
Armanious, Karim ;
Jiang, Chenming ;
Fischer, Marc ;
Kuestner, Thomas ;
Nikolaou, Konstantin ;
Gatidis, Sergios ;
Yang, Bin .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 79
[7]  
Armanious K, 2019, HELL J NUCL MED, V22, P179, DOI 10.1967/s002449911053
[8]   A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults [J].
Babayan, Anahit ;
Erbey, Miray ;
Kumral, Deniz ;
Reinelt, Janis D. ;
Reiter, Andrea M. F. ;
Roebbig, Josefin ;
Schaare, H. Lina ;
Uhlig, Marie ;
Anwander, Alfred ;
Bazin, Pierre-Louis ;
Horstmann, Annette ;
Lampe, Leonie ;
Nikulin, Vadim V. ;
Okon-Singer, Hadas ;
Preusser, Sven ;
Pampel, Andre ;
Rohr, Christiane S. ;
Sacher, Julia ;
Thoene-Otto, Angelika ;
Trapp, Sabrina ;
Nierhaus, Till ;
Altmann, Denise ;
Arelin, Katrin ;
Bloechl, Maria ;
Bongartz, Edith ;
Breig, Patric ;
Cesnaite, Elena ;
Chen, Sufang ;
Cozatl, Roberto ;
Czerwonatis, Saskia ;
Dambrauskaite, Gabriele ;
Dreyer, Maria ;
Enders, Jessica ;
Engelhardt, Melina ;
Fischer, Marie Michele ;
Forschack, Norman ;
Golchert, Johannes ;
Golz, Laura ;
Guran, C. Alexandrina ;
Hedrich, Susanna ;
Hentschel, Nicole ;
Hoffmann, Daria I. ;
Huntenburg, Julia M. ;
Jost, Rebecca ;
Kosatschek, Anna ;
Kunzendorf, Stella ;
Lammers, Hannah ;
Lauckner, Mark E. ;
Mahjoory, Keyvan ;
Kanaan, Ahmad S. .
SCIENTIFIC DATA, 2019, 6 (1)
[9]  
Bagheri F., 2023, CMBES P, V45
[10]   A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI [J].
Bahrami, Abass ;
Karimian, Alireza ;
Fatemizadeh, Emad ;
Arabi, Hossein ;
Zaidi, Habib .
MEDICAL PHYSICS, 2020, 47 (10) :5158-5171