Effect of air entraining and pumice on properties of ultra-high performance lightweight concrete

被引:10
|
作者
Zeyad, Abdullah M. [1 ]
Amin, Mohamed [2 ]
Agwa, Ibrahim Saad [2 ]
机构
[1] Jazan Univ, Fac Engn, Civil Engn Dept, Jazan 45142, Saudi Arabia
[2] Suez Univ, Fac Technol & Educ, Civil & Architectural Construct Dept, Suez, Egypt
关键词
Air-entraining; Pumice; Aluminum powder; Lightweight concrete; Nano silica; Lighcrete; MICRO-STEEL FIBER; HIGH-STRENGTH; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; ENGINEERING PROPERTIES; NANO-SILICA; AGGREGATE; MICROSTRUCTURE; POLYPROPYLENE; PERMEABILITY;
D O I
10.1007/s43452-023-00823-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study focuses on developing the production of ultra-high-performance lightweight concrete (UHPLC) by combining pumice with an air-entraining agent. Air-entraining agents of aluminum powder (AP) and lightcrete (LC) were added in amounts of 0.1, 0.2, 0.3, 0.4, and 0.5% by weight of cement to create air bubbles. Crushed pumice has also been used as a partial sand replacement in proportions of 25% and 50% by volume, with or without the addition of AP or LC. To investigate the fresh, mechanical, and microstructural properties, seventeen UHPLC combinations were constructed. A slump flow diameter test was conducted to evaluate the characteristics of fresh UHPLC, and mechanical properties were evaluated by completing dry density, compressive strength, tensile strength, flexural strength, modulus of elasticity, and dry shrinkage tests. The effect of high temperatures of 20, 400, 600, and 800 degrees C on compressive strength was also investigated. The microstructure characteristics were analyzed using a scanning electron microscope. The research concluded that high-performance concrete with a compressive strength of 127.6 MPa and a dry density of 1970 kg/m3 could be produced after a 28-day age test. This was accomplished by including 0.1% LC by weight of cement and 25% pumice as a partial substitute for sand. The mixture with 50% pumice as a partial replacement for sand and the addition of 0.5% LC of the cement weight exhibited the least loss in compressive strength when subjected to high temperatures.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges
    Abbas, S.
    Nehdi, M. L.
    Saleem, M. A.
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2016, 10 (03) : 271 - 295
  • [22] Design and properties of ultra-high performance concrete
    Shi, Caijun
    Wu, Zemei
    Wang, Dehui
    Wu, Linmei
    CONSTRUCTION MATERIALS AND STRUCTURES, 2014, : 86 - 98
  • [23] Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling
    Yu, R.
    Spiesz, P.
    Brouwers, H. J. H.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 68 : 158 - 171
  • [24] Effect of post-fire curing and silica fume on permeability of ultra-high performance concrete
    Li, Ye
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 290
  • [25] Effect of nanosilica on fiber pullout behavior and mechanical properties of strain hardening ultra-high performance concrete
    Li, Mingzhe
    Sun, Jialun
    Li, Lei
    Meng, Lingqi
    Wang, Shihe
    Wei, Jiuqi
    Mao, Jize
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 367
  • [26] Ultra-high performance concrete with metal mine tailings and its properties: a review
    Li, Qiuming
    Feng, Xiaoxin
    Liu, Yue
    Jia, Yuan
    Liu, Gang
    Xie, Yuantao
    CORROSION REVIEWS, 2024, 42 (06) : 677 - 701
  • [27] Performance evaluation of ultra-high performance concrete designed with alccofine
    Reddy, G. Gautham Kishore
    Ramadoss, P.
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2020, 6 (01)
  • [28] Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties
    Arora, Aashay
    Almujaddidi, Asim
    Kianmofrad, Farrokh
    Mobasher, Barzin
    Neithalath, Narayanan
    CEMENT & CONCRETE COMPOSITES, 2019, 104
  • [29] Transport Properties and Resistance Improvement of Ultra-High Performance Concrete (UHPC) after Exposure to Elevated Temperatures
    Qian, Yunfeng
    Yang, Dingyi
    Xia, Yanghao
    Gao, Han
    Ma, Zhiming
    BUILDINGS, 2021, 11 (09)
  • [30] Microplastics as lightweight aggregates for ultra-high performance concrete: Mechanical properties and autoignition at elevated temperatures
    Ahn, Jaesung
    Moon, Juhyuk
    Pae, Junil
    Kim, Hyeong-Ki
    COMPOSITE STRUCTURES, 2023, 321