共 45 条
Multiencoder-based federated intelligent deep learning model for brain tumor segmentation
被引:4
作者:
Soni, Vaibhav
[1
]
Singh, Nikhil Kumar
[2
]
Singh, Rishi Kumar
[1
]
Tomar, Deepak Singh
[1
]
机构:
[1] Maulana Azad Natl Inst Technol, Bhopal, India
[2] Indian Inst Informat Technol, Bhopal, India
关键词:
artificial intelligent dilated convolution;
brain tumor segmentation;
channel attention;
federated learning;
image processing;
multi-encoder;
NETWORKS;
D O I:
10.1002/ima.22981
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Glioma, a primary tumor derived from brain glial cells, is around 45% of all intracranial tumors. Magnetic resonance imaging's (MRI's) precise glioma segmentation is crucial for clinical purposes. This article presents a novel automatic brain tumor segmentation approach based on a multi-encoder-based federated intelligent deep learning framework. The suggested method uses a U-shaped network design that multiplies the single contraction path into several paths to explore semantic information modalities deeply. The basic convolutional layer uses an Inception module and dilated convolutions to extract multi-scale features from the images using artificial intelligent. To emphasize segmentation-related information while ignoring redundant channel dimension information and improving the accuracy of network segmentation, lightweight channel attention efficient channel attention (ECA) modules are inserted into the bottleneck layer and decoder. The collection of data for the 2018 Brain Tumor Segmentation Challenge (BraTS 2018) is used to test the effectiveness of the suggested structure, and the findings indicate that the growth core, for the entire tumor and the augmented tumor regions, respectively, the average Dice coefficients are 0.880, 0.784, and 0.757. These findings support the proposed algorithm's ability to accurately and successfully segregate multimodal MRI brain tumors.
引用
收藏
页数:14
相关论文