Polynomial identities and images of polynomials on null-filiform Leibniz algebras

被引:1
作者
de Mello, Thiago Castilho [1 ]
Souza, Manuela da Silva [2 ]
机构
[1] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Sao Paulo, SP, Brazil
[2] Univ Fed Bahia, Inst Matemat & Estat, Salvador, BA, Brazil
基金
巴西圣保罗研究基金会;
关键词
Images of polynomials on algebras; Leibniz algebras; Null-filiform Leibniz algebras; Polynomial identities; L'vov-Kaplansky conjecture; MULTILINEAR POLYNOMIALS;
D O I
10.1016/j.laa.2023.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study identities and images of polynomials on null-filiform Leibniz algebras. If L-n is an n-dimensional null-filiform Leibniz algebra, we exhibit a finite minimal basis for Id(L-n), the polynomial identities of L-n, and we explicitly compute the images of multihomogeneous polynomials on L-n. We present necessary and sufficient conditions for the image of a multihomogeneous polynomial f to be a subspace of L-n. For the particular case of multilinear polynomials, we prove that the image is always a vector space, showing that the analogue of the L'vov-Kaplansky conjecture holds for L-n. We also prove similar results for an analog of null-filiform Leibniz algebras in the infinite-dimensional case. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 260
页数:15
相关论文
共 34 条
  • [1] Varieties of Null-Filiform Leibniz Algebras Under the Action of Hopf Algebras
    Centrone, Lucio
    Zargeh, Chia
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (02) : 631 - 648
  • [2] Varieties of Null-Filiform Leibniz Algebras Under the Action of Hopf Algebras
    Lucio Centrone
    Chia Zargeh
    Algebras and Representation Theory, 2023, 26 : 631 - 648
  • [3] Local Derivations and Automorphisms of Direct Sum Null-Filiform Leibniz Algebras
    J. Q. Adashev
    B. B. Yusupov
    Lobachevskii Journal of Mathematics, 2022, 43 : 3407 - 3413
  • [4] Local Derivations and Automorphisms of Direct Sum Null-Filiform Leibniz Algebras
    Adashev, J. Q.
    Yusupov, B. B.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) : 3407 - 3413
  • [5] On filiform and 2-filiform Leibniz algebras of maximum length
    Cabezas, J. M.
    Camacho, L. M.
    Rodriguez, I. M.
    JOURNAL OF LIE THEORY, 2008, 18 (02) : 335 - 350
  • [6] Naturally graded quasi-filiform Leibniz algebras
    Camacho, L. M.
    Gomez, J. R.
    Gonzalez, A. J.
    Omirov, B. A.
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 527 - 539
  • [7] Graded polynomial identities as identities of universal algebras
    Bahturin, Yuri
    Yasumura, Felipe
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 562 : 1 - 14
  • [8] Novikov algebras in low dimension: Identities, images and codimensions
    dos Santos, Iritan Ferreira
    Kuz'min, Alexey M.
    Lopatin, Artem
    JOURNAL OF ALGEBRA, 2025, 674 : 1 - 28
  • [9] Symmetric polynomials in Leibniz algebras and their inner automorphisms
    Findik, Sehmus
    Ozkurt, Zeynep
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (06) : 2306 - 2311
  • [10] Images of graded polynomials on matrix algebras
    Centrone, Lucio
    de Mello, Thiago Castilho
    JOURNAL OF ALGEBRA, 2023, 614 : 650 - 669