Mitochondrial proteome research: the road ahead

被引:19
作者
Baker, Zakery N. [1 ]
Forny, Patrick [1 ]
Pagliarini, David J. [1 ,2 ,3 ]
机构
[1] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63130 USA
[2] Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63130 USA
[3] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63130 USA
基金
瑞士国家科学基金会; 美国国家卫生研究院;
关键词
MASS-SPECTROMETRY; LYSINE ACETYLATION; HIGH-THROUGHPUT; OPA1; ISOFORMS; DISEASE GENES; CELL-DEATH; COMPLEX; PHOSPHORYLATION; DEHYDROGENASE; MUTATIONS;
D O I
10.1038/s41580-023-00650-7
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.
引用
收藏
页码:65 / 82
页数:18
相关论文
共 190 条
  • [81] Increased Enzymatic O-GlcNAcylation of Mitochondrial Proteins Impairs Mitochondrial Function in Cardiac Myocytes Exposed to High Glucose
    Hu, Yong
    Suarez, Jorge
    Fricovsky, Eduardo
    Wang, Hong
    Scott, Brian T.
    Trauger, Sunia A.
    Han, Wenlong
    Hu, Ying
    Oyeleye, Mary O.
    Dillmann, Wolfgang H.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (01) : 547 - 555
  • [82] Single-pot, solid-phase-enhanced sample preparation for proteomics experiments
    Hughes, Christopher S.
    Moggridge, Sophie
    Mueller, Torsten
    Sorensen, Poul H.
    Morin, Gregg B.
    Krijgsveld, Jeroen
    [J]. NATURE PROTOCOLS, 2019, 14 (01) : 68 - +
  • [83] Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation
    Hung, Victoria
    Lam, Stephanie S.
    Udeshi, Namrata D.
    Svinkina, Tanya
    Guzman, Gaelen
    Mootha, Vamsi K.
    Carr, Steven A.
    Ting, Alice Y.
    [J]. ELIFE, 2017, 6
  • [84] Proteomic Mapping of the Human Mitochondrial Intermembrane Space in Live Cells via Ratiometric APEX Tagging
    Hung, Victoria
    Zou, Peng
    Rhee, Hyun-Woo
    Udeshi, Namrata D.
    Cracan, Valentin
    Svinkina, Tanya
    Carr, Steven A.
    Mootha, Vamsi K.
    Ting, Alice Y.
    [J]. MOLECULAR CELL, 2014, 55 (02) : 332 - 341
  • [85] Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes
    Kathayat, Rahul S.
    Cao, Yang
    Elvira, Pablo D.
    Sandoz, Patrick A.
    Zaballa, Maria-Eugenia
    Springer, Maya Z.
    Drake, Lauren E.
    Macleod, Kay F.
    van der Goot, F. Gisou
    Dickinson, Bryan C.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [86] KENNEDY EP, 1949, J BIOL CHEM, V179, P957
  • [87] Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    Kim, Sung Chan
    Sprung, Robert
    Chen, Yue
    Xu, Yingda
    Ball, Haydn
    Pei, Jimin
    Cheng, Tzuling
    Kho, Yoonjung
    Xiao, Hao
    Xiao, Lin
    Grishin, Nick V.
    White, Michael
    Yang, Xiang-Jiao
    Zhao, Yingming
    [J]. MOLECULAR CELL, 2006, 23 (04) : 607 - 618
  • [88] Kohler S., 2020, NUCLEIC ACIDS RES, V49, pgkaa1043
  • [89] Genetic diagnosis of Mendelian disorders via RNA sequencing
    Kremer, Laura S.
    Bader, Daniel M.
    Mertes, Christian
    Kopajtich, Robert
    Pichler, Garwin
    Iuso, Arcangela
    Haack, Tobias B.
    Graf, Elisabeth
    Schwarzmayr, Thomas
    Terrile, Caterina
    Konarikova, Eliska
    Repp, Birgit
    Kastenmueller, Gabi
    Adamski, Jerzy
    Lichtner, Peter
    Leonhardt, Christoph
    Funalot, Benoit
    Donati, Alice
    Tiranti, Valeria
    Lombes, Anne
    Jardel, Claude
    Glaeser, Dieter
    Taylor, Robert W.
    Ghezzi, Daniele
    Mayr, Johannes A.
    Roetig, Agnes
    Freisinger, Peter
    Distelmaier, Felix
    Strom, Tim M.
    Meitinger, Thomas
    Gagneur, Julien
    Prokisch, Holger
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [90] Mitochondrial phosphoproteomics of mammalian tissues
    Kruse, Rikke
    Hojlund, Kurt
    [J]. MITOCHONDRION, 2017, 33 : 45 - 57