Physical binding energies using the electron localization function in 4-hydroxyphenylboronic acid co-crystals with aza donors

被引:4
作者
Shimpi, Mayura Talwelkar [1 ,2 ]
Sajjad, Muhammad [1 ,3 ]
Oberg, Sven [1 ]
Larsson, J. Andreas [1 ]
机构
[1] Lulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, Appl Phys, SE-97187 Lulea, Sweden
[2] Uppsala Univ, Dept Pharmaceut Biosci, POB 591, S-75124 Uppsala, Sweden
[3] Univ Nottingham Ningbo China, Nottingham Ningbo China Beacons Excellence Res & I, Ningbo, Peoples R China
基金
瑞典研究理事会;
关键词
dispersion corrected DFT; co-crystals; hydrogen-bonds; binding energy; lattice energy; ELF; SUPRAMOLECULAR SYNTHON APPROACH; BORONIC ACID; MOLECULAR-COMPLEXES; PHARMACEUTICAL COCRYSTALS; TOPOLOGICAL ANALYSIS; MONTE-CARLO; DENSITY; DISPERSION; BONDS; APPROXIMATION;
D O I
10.1088/1361-648X/acf638
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Binding energies are traditionally simulated using cluster models by computation of each synthon for each individual co-crystal former. However, our investigation of the binding strengths using the electron localization function (ELF) reveals that these can be determined directly from the crystal supercell computations. We propose a new modeling protocol for the computation of physical binding energies directly from bulk simulations using ELF analysis. In this work, we establish a correlation between ELF values and binding energies calculated for co-crystals of 4-hydroxyphenylboronic acid (4HPBA) with four different aza donors using density functional theory with varying descriptions of dispersion. Boronic acids are gaining significant interest in the field of crystal engineering, but theoretical studies on their use in materials are still very limited. Here, we present a systematic investigation of the non-covalent interactions in experimentally realized co-crystals. Prior diffraction studies on these complexes have shown the competitive nature between the boronic acid functional group and the para-substituted phenolic group forming heteromeric interactions with aza donors. We determine the stability of the co-crystals by simulating their lattice energies, and the different dispersion descriptions show similar trends in lattice energies and lattice parameters. Our study bolsters the experimental observation of the boronic acid group as a competitive co-crystal former in addition to the well-studied phenolic group. Further research on correlating ELF values for physical binding could potentially transform this approach to a viable alternative for the computation of binding energies.
引用
收藏
页数:12
相关论文
共 81 条
  • [1] Crystal engineering: Strategies and architectures
    Aakeroy, CB
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1997, 53 : 569 - 586
  • [2] Recent advances in crystal engineering
    Aakeroy, Christer B.
    Champness, Neil R.
    Janiak, Christoph
    [J]. CRYSTENGCOMM, 2010, 12 (01): : 22 - 43
  • [3] Toward reliable density functional methods without adjustable parameters: The PBE0 model
    Adamo, C
    Barone, V
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) : 6158 - 6170
  • [4] BENZENE, AROMATIC RINGS, VANDERWAALS MOLECULES, AND CRYSTALS OF AROMATIC-MOLECULES IN MOLECULAR MECHANICS (MM3)
    ALLINGER, NL
    LII, JH
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1987, 8 (08) : 1146 - 1153
  • [5] NWChem: Past, present, and future
    Apra, E.
    Bylaska, E. J.
    de Jong, W. A.
    Govind, N.
    Kowalski, K.
    Straatsma, T. P.
    Valiev, M.
    van Dam, H. J. J.
    Alexeev, Y.
    Anchell, J.
    Anisimov, V
    Aquino, F. W.
    Atta-Fynn, R.
    Autschbach, J.
    Bauman, N. P.
    Becca, J. C.
    Bernholdt, D. E.
    Bhaskaran-Nair, K.
    Bogatko, S.
    Borowski, P.
    Boschen, J.
    Brabec, J.
    Bruner, A.
    Cauet, E.
    Chen, Y.
    Chuev, G. N.
    Cramer, C. J.
    Daily, J.
    Deegan, M. J. O.
    Dunning, T. H., Jr.
    Dupuis, M.
    Dyall, K. G.
    Fann, G., I
    Fischer, S. A.
    Fonari, A.
    Fruechtl, H.
    Gagliardi, L.
    Garza, J.
    Gawande, N.
    Ghosh, S.
    Glaesemann, K.
    Goetz, A. W.
    Hammond, J.
    Helms, V
    Hermes, E. D.
    Hirao, K.
    Hirata, S.
    Jacquelin, M.
    Jensen, L.
    Johnson, B. G.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (18)
  • [6] Bader R. F. W., 1990, Atoms in Molecules: a Quantum Theory
  • [7] A density-functional model of the dispersion interaction
    Becke, AD
    Johnson, ER
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (15)
  • [8] A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS
    BECKE, AD
    EDGECOMBE, KE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) : 5397 - 5403
  • [9] DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE
    BECKE, AD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5648 - 5652
  • [10] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979