Greenhouse gas intensity of natural hydrogen produced from subsurface geologic accumulations

被引:13
作者
Brandt, Adam R. [1 ]
机构
[1] Stanford Univ, Dept Energy Sci & Engn, 367 Panama St, Stanford, CA 94305 USA
关键词
LIFE; H-2; EMISSIONS; FIELD; DEEP; CONSEQUENCES;
D O I
10.1016/j.joule.2023.07.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Natural geologic hydrogen (H2) could supply climate-friendly energy. We perform a prospective life cycle assessment (LCA) of a generic natural H2 production and processing system, using engineering phys-ics and chemistry to estimate greenhouse gas (GHG) intensity. Our baseline case gas contains 85 mol % H2, 12% N2, and 1.5% CH4. Well productivity, depth, and other parameters use data from US natural gas wells. We use an open-source LCA tool to model energy use and emissions. Site-boundary baseline GHG intensity is-0.4 kg CO2 equiv/kg H2 or-3 g CO2 equiv/MJ lower heating value (LHV) H2. The largest sources of GHGs are fugitive emissions and embodied emissions. Sensitivity analysis is performed by examining varying gas compositions, reservoir parameters, and production methods. Results are sensitive to CH4 content: a case with 75% H2 and 22.5% CH4 emits 1.5 kg CO2 equiv/kg H2. Other key drivers include sources of process energy and the handling and disposing of waste (non-H2) species.
引用
收藏
页码:1818 / 1831
页数:15
相关论文
共 44 条
  • [1] METHANE HYDROGEN GAS SEEPS, ZAMBALES OPHIOLITE, PHILIPPINES - DEEP OR SHALLOW ORIGIN
    ABRAJANO, TA
    STURCHIO, NC
    BOHLKE, JK
    LYON, GL
    POREDA, RJ
    STEVENS, CM
    [J]. CHEMICAL GEOLOGY, 1988, 71 (1-3) : 211 - 222
  • [2] Genesis of natural hydrogen: New insights from thermodynamic simulations
    Arrouvel, Corinne
    Prinzhofer, Alain
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (36) : 18780 - 18794
  • [3] Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity
    Bergerson, Joule A.
    Brandt, Adam
    Cresko, Joe
    Carbajales-Dale, Michael
    MacLean, Heather L.
    Matthews, H. Scott
    McCoy, Sean
    McManus, Marcelle
    Miller, Shelie A.
    Morrow, William R., III
    Posen, I. Daniel
    Seager, Thomas
    Skone, Timothy
    Sleep, Sylvia
    [J]. JOURNAL OF INDUSTRIAL ECOLOGY, 2020, 24 (01) : 11 - 25
  • [4] Boreham CJ, 2021, APPEA J, V61, P163, DOI 10.1071/aj20044
  • [5] Hydrogen emissions from hydrothermal fields in Iceland and comparison with the Mid-Atlantic Ridge
    Combaudon, Valentine
    Moretti, Isabelle
    Kleine, Barbara I.
    Stefansson, Andri
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (18) : 10217 - 10227
  • [6] Updating the US Life Cycle GHG Petroleum Baseline to 2014 with Projections to 2040 Using Open-Source Engineering-Based Models
    Cooney, Gregory
    Jamieson, Matthew
    Marriott, Joe
    Bergerson, Joule
    Brandt, Adam
    Skone, Timothy J.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (02) : 977 - 987
  • [7] Derwent R., 2006, International Journal of Nuclear Hydrogen Production and Applications, V1, P57, DOI 10.1504/IJNHPA.2006.009869
  • [8] Derwent R.G., 2018, BEIS Research Paper Number 2018: no. 21
  • [9] Global modelling studies of hydrogen and its isotopomers using STOCHEM-CRI: Likely radiative forcing consequences of a future hydrogen economy
    Derwent, Richard G.
    Stevenson, David S.
    Utembe, Steven R.
    Jenkin, Michael E.
    Khan, Anwar H.
    Shallcross, Dudley E.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (15) : 9211 - 9221
  • [10] Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power
    Dolan, Stacey L.
    Heath, Garvin A.
    [J]. JOURNAL OF INDUSTRIAL ECOLOGY, 2012, 16 : S136 - S154