共 50 条
Exploring the effects of micro-nano surface topography on MG63 osteoblast-like cell responses: An in vitro study
被引:10
|作者:
Jafarkhani, Saeed
[2
,3
]
Amiri, Elahe
[2
]
Moazzeni, Seyedsajad
[4
]
Zohoorian-Abootorabi, Toktam
[3
]
Eftekhary, Mohamad
[5
]
Aminnezhad, Sargol
[6
]
Khakbiz, Mehrdad
[1
,2
]
机构:
[1] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08854 USA
[2] Univ Tehran, Fac New Sci & Technol, Div Biomed Engn, Tehran, Iran
[3] Univ Tehran, Inst Biochem & Biophys, Tehran, Iran
[4] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ USA
[5] Guilan Univ Med Sci, Fac Paramedicine, Dept Med Biotechnol, Rasht, Iran
[6] Univ Tehran, Inst Biochem & Biophys, Lab Syst Biol & Bioinformat LBB, Tehran, Iran
关键词:
Surface modification;
Osteoblast-like MG63 cells;
Differentiation;
MESENCHYMAL STEM-CELLS;
TITANIUM-ALLOY;
HYDROXYAPATITE;
COATINGS;
ADHESION;
GROWTH;
DIFFERENTIATION;
STABILITY;
FILOPODIA;
SUBSTRATE;
D O I:
10.1016/j.colsurfa.2023.131872
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The osseointegration property of dental and bone implants is a crucial factor for proper healing, and is entirely influenced by the surface characteristics, including surface chemistry and roughness. However, the molecular mechanisms for osteoconductivity remain unclear. This study aimed to investigate the effective cellular interactions and stimulatory effect of surface topology on the differentiation of osteoblast-like cells using in-vitro cell culture. Three different substrates, including micro (MS), nano (NS), and combined micro-nano structures (MNS), were used to evaluate the interaction between cells and surface topography. The fabricated membranes were characterized with FESEM for pore study and XRD analysis to identify the Aluminum oxide. The cell count significantly decreased for electropolished (EP) and microstructure (MS) substrates. The expression level of osteogenesis-related genes during differentiation, including Runt-related transcription factor 2 (Runx2), type I Collagen (Col-I), and Osteocalcin (OC) was determined by real-time PCR. The results showed that MG63 osteoblast-like cells cultured on the MNS and NS substrates had significantly higher expression levels of these genes than those cultured on the MS. Additionally, flow cytometry results showed that F-actin levels were higher in MG63 cells cultured on NS and MNS substrates than those cultured on MS. The desirable biological response of MG63 cells to MNS substrates suggests that electrochemical anodization after acid etch and powder blasting treatments is a possible process for high-grade osseointegration in-vivo.
引用
收藏
页数:13
相关论文