共 13 条
PET REBINNING WITH REGULARIZED DENSITY SPLINES
被引:1
作者:
Boquet-Pujadas, Aleix
[1
]
Pla, Pol del Aguila
[1
,2
]
Unser, Michael
[1
]
机构:
[1] Ecole Polytech Fed Lausanne, Biomed Imaging Grp, Lausanne, Switzerland
[2] CIBM Ctr Biomed Imaging, Lausanne, Switzerland
来源:
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI
|
2023年
基金:
瑞士国家科学基金会;
关键词:
Positron emission tomography;
Poisson process;
Density estimation;
Hessian-Schatten norm;
D O I:
10.1109/ISBI53787.2023.10230798
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
PET reconstruction algorithms have long relied on sinogram rebinning. However, as detectors grow smaller in a recent wave of cutting-edge scanners, individual sensors no longer accrue hundreds of photons. Instead, most detect a single photon or none at all, effectively turning sinogram data into point-cloud measurements. The highly heterogeneous sensitivity of these scanners is another issue. We approach sinogram rebinning in the face of these challenges with a density-estimation framework that promotes knot sparsity in an underlying spline basis.
引用
收藏
页数:4
相关论文