Further Seminorm and Numerical Radius Inequalities for Products and Sums of Operators

被引:2
作者
Conde, Cristian [1 ,2 ]
Feki, Kais [3 ,4 ]
Kittaneh, Fuad [5 ]
机构
[1] Univ Nacl Gral Sarmiento, Inst Ciencias, Los Polvorines, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Los Polvorines, Argentina
[3] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia, Tunisia
[4] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR 13 ES 22, Sfax, Tunisia
[5] Univ Jordan, Dept Math, Amman, Jordan
关键词
Numerical radius; positive operator; product; seminorm; semi-inner product; sum; NORM INEQUALITIES; BOUNDS;
D O I
10.1080/01630563.2023.2221897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this article is to establish several new norm and numerical radius inequalities for products and sums of operators acting on a complex Hilbert space (H, <center dot, center dot >). Some of the obtained inequalities improve well known ones. In addition, by using new techniques, we prove certain new inequalities related to (omega)A(center dot) and parallel to center dot parallel to A, where (omega)A(T) and parallel to T parallel to (A) denote the A-numerical radius and the A-operator seminormof an operator T acting on the semi-Hilbert space (H, <center dot, center dot > A), respectively. Here < x, y > A := < Ax, y > for every x, y epsilon H.
引用
收藏
页码:1097 / 1118
页数:22
相关论文
共 50 条