Infinitely many solutions for quasilinear Schrodinger equation with general superlinear nonlinearity

被引:0
|
作者
Li, Jiameng [1 ]
Chen, Huiwen [1 ,3 ]
He, Zhimin [2 ]
Ouyang, Zigen [1 ,3 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang 421001, Hunan, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] Univ South China, Hunan Key Lab Math Modeling & Sci Comp, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; Sign-changing potential; Mountain pass theorem; GROUND-STATE SOLUTIONS; ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; SOLITON-SOLUTIONS; EXISTENCE;
D O I
10.1186/s13661-023-01755-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the quasilinear Schrodinger equation Delta(u) + V(x)u -Delta(u(2))u = g(x, u), x epsilon R-N, where the potential V(x) and the primitive of g(x, u) are allowed to be sign-changing. Under more general superlinear conditions on g, we obtain the existence of infinitely many nontrivial solutions by using the mountain pass theorem. Recent results in the literature are significantly improved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Infinitely many radial and non-radial solutions for a fractional Schrodinger equation
    Zhang, Wen
    Tang, Xianhua
    Zhang, Jian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (03) : 737 - 747
  • [42] Ground state solutions for a quasilinear elliptic equation with general critical nonlinearity
    Shang, Tingting
    Liang, Ruixi
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) : 586 - 613
  • [43] Infinitely many solutions for a resonant sublinear Schrodinger equation
    Bao, Gui
    Han, Zhiqing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (17) : 2811 - 2816
  • [44] Existence and asymptotic properties of positive solutions for a general quasilinear Schrodinger equation
    Zhang, Xiang
    Zhang, Yimin
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [45] Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
    Chen, Lijuan
    Chen, Caisheng
    Chen, Qiang
    Wei, Yunfeng
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [46] Multiple solutions for a quasilinear Schrodinger equation
    Fang, Xiang-Dong
    Szulkin, Andrzej
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) : 2015 - 2032
  • [47] INFINITELY MANY LARGE ENERGY SOLUTIONS OF SUPERLINEAR SCHRODINGER-MAXWELL EQUATIONS
    Li, Lin
    Chen, Shang-Jie
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [48] Infinitely many solutions for superlinear periodic Hamiltonian elliptic systems
    Xu, Xiaoming
    Kuang, Qiaoyan
    Gong, Yanping
    BOUNDARY VALUE PROBLEMS, 2015,
  • [49] Solvability for boundary value problem of the general Schrodinger equation with general superlinear nonlinearity
    He, Hongjun
    Pang, Zhifeng
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [50] EXISTENCE OF GROUND STATE SOLUTIONS FOR A CLASS OF QUASILINEAR SCHRODINGER EQUATIONS WITH GENERAL CRITICAL NONLINEARITY
    Chen, Jianhua
    Tang, Xianhua
    Cheng, Bitao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) : 493 - 517