Carbon black supported manganese phthalocyanine: Efficient electrocatalyst for nitrogen reduction to ammonia

被引:21
作者
Adalder, Ashadul [1 ,2 ]
Waghela, Santosh R. [3 ]
Shelukar, Sachin A. [3 ]
Mukherjee, Nilmadhab [1 ]
Das, Swati [2 ]
Ghorai, Uttam Kumar [1 ,4 ]
机构
[1] Ramakrishna Mission Vidyamandira, Swami Vivekananda Res Ctr, Dept Ind Chem & Appl Chem, Belur Math, Howrah, India
[2] Ananda Mohan Coll, Dept Phys, Kolkata, India
[3] Birla Carbon India Pvt Ltd, Technol Lab, Mumbai, India
[4] Ramakrishna Mission Vidyamandira, Swami Vivekananda Res Ctr, Dept Ind Chem & Appl Chem, Belur Math, Howrah 711202, India
关键词
ammonia synthesis; ENRR; Haber-Bosch process; metal phthalocyanine; nitrogen fixation; OXYGEN VACANCIES; N-2; REDUCTION; FIXATION; NANOPARTICLES; PERFORMANCE; NANOTUBES; GRAPHENE; CATALYST; SITE; NH3;
D O I
10.1002/eng2.12705
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ammonia (NH3) is regarded as a renewable energy source as well as an important molecule for agricultural applications. The energy-intensive Haber-Bosch method produces large amounts of CO2 gas during ammonia production. As an alternative, there has recently been much interest in the electrocatalytic production of NH3 via the electrochemical nitrogen reduction reaction (ENRR) process utilizing renewable energy under ambient condition. Herein, we report a conducting carbon-supported manganese phthalocyanine electrocatalyst as an efficient electrocatalyst for ENRR applications. The MnPc electrocatalyst exhibited the activity with an ammonia production rate of 61.8 mu gh(-1)mg(-1) (cat) with Faradaic efficiency (FE) of 31.3% @-0.4V vs. RHE, respectively, under ambient condition in 0.1M HCl solution whereas MnPc/C electrocatalyst exhibited an enhanced the productivity with an ammonia yield rate of 127.7 mu gh(-1)mg(-1) (cat) with FE of 35.3% @-0.4V vs. RHE, respectively. The reliability of N origin in ammonia formation is demonstrated by H-1-NMR experiments and multiple control analysis. These results open the way for the further study of carbon-supported transition-metal phthalocyanine compounds for electrochemical nitrogen fixation to NH3.
引用
收藏
页数:13
相关论文
共 78 条
[1]   Progress of electrochemical synthesis of nitric acid: catalyst design, mechanistic insights, protocol and challenges [J].
Adalder, Ashadul ;
Paul, Sourav ;
Ghorai, Uttam Kumar .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (19) :10125-10148
[2]   Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon [J].
Ali, Muataz ;
Zhou, Fengling ;
Chen, Kun ;
Kotzur, Christopher ;
Xiao, Changlong ;
Bourgeois, Laure ;
Zhang, Xinyi ;
MacFarlane, Douglas R. .
NATURE COMMUNICATIONS, 2016, 7
[3]   A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements [J].
Andersen, Suzanne Z. ;
Colic, Viktor ;
Yang, Sungeun ;
Schwalbe, Jay A. ;
Nielander, Adam C. ;
McEnaney, Joshua M. ;
Enemark-Rasmussen, Kasper ;
Baker, Jon G. ;
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Blair, Sarah J. ;
Mezzavilla, Stefano ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Cargnello, Matteo ;
Bent, Stacey F. ;
Jaramillo, Thomas F. ;
Stephens, Ifan E. L. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
NATURE, 2019, 570 (7762) :504-+
[4]   A first-principles investigation of nitrogen reduction to ammonia on zirconium nitride and oxynitride surfaces [J].
Banerjee, Amitava ;
Ceballos, Bianca M. ;
Kreller, Cortney ;
Mukundan, Rangachary ;
Pilania, Ghanshyam .
JOURNAL OF MATERIALS SCIENCE, 2022, 57 (22) :10213-10224
[5]   Distinguishing Plasma Contributions to Catalyst Performance in Plasma-Assisted Ammonia Synthesis [J].
Barboun, Patrick ;
Mehta, Prateek ;
Herrera, Francisco A. ;
Go, David B. ;
Schneider, William F. ;
Hicks, Jason C. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (09) :8621-8630
[6]   Oxygen Functionalization-Induced Charging Effect on Boron Active Sites for High-Yield Electrocatalytic NH3 Production [J].
Biswas, Ashmita ;
Kapse, Samadhan ;
Thapa, Ranjit ;
Dey, Ramendra Sundar .
NANO-MICRO LETTERS, 2022, 14 (01)
[7]   Lewis acid-dominated aqueous electrolyte acting as co-catalyst and overcoming N2 activation issues on catalyst surface [J].
Biswas, Ashmita ;
Kapse, Samadhan ;
Ghosh, Bikram ;
Thapa, Ranjit ;
Dey, Ramendra Sundar .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (33)
[8]   Alteration of Electronic Band Structure via a Metal-Semiconductor Interfacial Effect Enables High Faradaic Efficiency for Electrochemical Nitrogen Fixation [J].
Biswas, Ashmita ;
Nandi, Surajit ;
Kamboj, Navpreet ;
Pan, Jaysree ;
Bhowmik, Arghya ;
Dey, Ramendra Sundar .
ACS NANO, 2021, 15 (12) :20364-20376
[9]   Roads less traveled: Nitrogen reduction reaction catalyst design strategies for improved selectivity [J].
Ceballos, Bianca M. ;
Pilania, Ghanshyam ;
Ramaiyan, Kannan P. ;
Banerjee, Amitava ;
Kreller, Cortney ;
Mukundan, Rangachary .
CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 28 (28)
[10]   Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition [J].
Cha, Junyoung ;
Lee, Taeho ;
Lee, Yu-Jin ;
Jeong, Hyangsoo ;
Jo, Young Suk ;
Kim, Yongmin ;
Nam, Suk Woo ;
Han, Jonghee ;
Lee, Ki Bong ;
Yoon, Chang Won ;
Sohn, Hyuntae .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 283