22 nm Resolution Achieved by Femtosecond Laser Two-Photon Polymerization of a Hyaluronic Acid Vinyl Ester Hydrogel

被引:17
作者
Duan, Qi [1 ,2 ,3 ]
Zhang, Wei-Cai [1 ,2 ,3 ]
Liu, Jie [1 ,2 ]
Jin, Feng [1 ,2 ]
Dong, Xian-Zi [1 ,2 ]
Bin, Fan-Chun [1 ,2 ,3 ]
Steinbauer, Patrick [4 ,5 ]
Zerobin, Elise [5 ]
Guo, Min [1 ,2 ,3 ]
Li, Teng [1 ,2 ,3 ]
Baudis, Stefan [4 ,5 ]
Zheng, Mei-Ling [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Lab Organ NanoPhoton, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Future Technol, Beijing 101407, Peoples R China
[4] TU Wien, Christian Doppler Lab Adv Polymers Biomat & 3D Pri, A-1060 Vienna, Austria
[5] TU Wien, Inst Appl Synthet Chem, A-1060 Vienna, Austria
基金
中国国家自然科学基金;
关键词
two-photon polymerization; femtosecond laser; hyaluronic acid derivative; water-soluble photoinitiator; 3D hydrogel scaffold; biocompatibility; MICROFABRICATION; MICROSTRUCTURES; SU-8;
D O I
10.1021/acsami.3c04346
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional(3D) bioinspired hydrogels have played an importantrole in tissue engineering, owing to their advantage of excellentbiocompatibility. Here, the two-photon polymerization (TPP) of a 3Dhydrogel with high precision has been investigated, using the precursorwith hyaluronic acid vinyl ester (HAVE) as the biocompatibility hydrogelmonomer, 3,3 '-((((1E,1 ' E)-(2-oxocyclopentane-1,3-diylidene) bis-(methanylylidene)) bis-(4,1-phenylene))bis-(methylazanediyl))-dipropanoate as the water-soluble initiator,and d l-dithiothreitol (DTT) as the click-chemistrycross-linker. The TPP properties of the HAVE precursors have beencomprehensively investigated by adjusting the solubility and the formulationof the photoresist. The feature line width of 22 nm has been obtainedat a processing laser threshold of 3.67 mW, and the 3D hydrogel scaffoldstructures have been fabricated. Furthermore, the average value ofYoung's modulus is 94 kPa for the 3D hydrogel, and cell biocompatibilityhas been demonstrated. This study would provide high potential forachieving a 3D hydrogel scaffold with highly precise configurationin tissue engineering and biomedicine.
引用
收藏
页码:26472 / 26483
页数:12
相关论文
共 52 条
[21]   Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs [J].
Qin, Xiao-Hua ;
Gruber, Peter ;
Markovic, Marica ;
Plochberger, Birgit ;
Klotzsch, Enrico ;
Stampfl, Juergen ;
Ovsianikov, Aleksandr ;
Liska, Robert .
POLYMER CHEMISTRY, 2014, 5 (22) :6523-6533
[22]   Molecular motor-driven filament transport across three-dimensional, polymeric micro-junctions [J].
Reuther, Cordula ;
Steenhusen, Sonke ;
Meinecke, Christoph Robert ;
Surendiran, Pradheebha ;
Salhotra, Aseem ;
Lindberg, Frida W. ;
Mansson, Alf ;
Linke, Heiner ;
Diez, Stefan .
NEW JOURNAL OF PHYSICS, 2021, 23 (12)
[23]   Structure-property relationships for two-photon absorbing chromophores:: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives [J].
Rumi, M ;
Ehrlich, JE ;
Heikal, AA ;
Perry, JW ;
Barlow, S ;
Hu, ZY ;
McCord-Maughon, D ;
Parker, TC ;
Röckel, H ;
Thayumanavan, S ;
Marder, SR ;
Beljonne, D ;
Brédas, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (39) :9500-9510
[24]   In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblasts [J].
Serrano, MC ;
Pagani, R ;
Vallet-Regí, M ;
Peña, J ;
Rámila, A ;
Izquierdo, I ;
Portolés, MT .
BIOMATERIALS, 2004, 25 (25) :5603-5611
[25]   Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering [J].
Shi, Wen ;
Fang, Fang ;
Kong, Yunfan ;
Greer, Sydney E. ;
Kuss, Mitchell ;
Liu, Bo ;
Xue, Wen ;
Jiang, Xiping ;
Lovell, Paul ;
Mohs, Aaron M. ;
Dudley, Andrew T. ;
Li, Tieshi ;
Duan, Bin .
BIOFABRICATION, 2022, 14 (01)
[26]   Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation [J].
Song, Shaoshuai ;
Liu, Xiaoyun ;
Huang, Jie ;
Zhang, Zhijun .
BIOMATERIALS ADVANCES, 2022, 133
[27]  
Stefan B., 2016, FRONT BIOENG BIOTECH, DOI [10.3389/conf.fbioe.2016.01.02459, DOI 10.3389/CONF.FBIOE.2016.01.02459]
[28]   Recent advances in polymeric drug delivery systems [J].
Sung, Yong Kiel ;
Kim, Sung Wan .
BIOMATERIALS RESEARCH, 2020, 24 (01)
[29]   Four-Dimensional Stimuli-Responsive Hydrogels Micro-Structured via Femtosecond Laser Additive Manufacturing [J].
Tao, Yufeng ;
Lu, Chengchangfeng ;
Deng, Chunsan ;
Long, Jing ;
Ren, Yunpeng ;
Dai, Zijie ;
Tong, Zhaopeng ;
Wang, Xuejiao ;
Meng, Shuai ;
Zhang, Wenguang ;
Xu, Yinuo ;
Zhou, Linlin .
MICROMACHINES, 2022, 13 (01)
[30]   SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication [J].
Teh, WH ;
Dürig, U ;
Salis, G ;
Harbers, R ;
Drechsler, U ;
Mahrt, RF ;
Smith, CG ;
Güntherodt, HJ .
APPLIED PHYSICS LETTERS, 2004, 84 (20) :4095-4097