Evolution driven by the infinity fractional Laplacian

被引:0
|
作者
del Teso, Felix [1 ]
Endal, Jorgen [1 ,2 ]
Jakobsen, Espen R. [2 ]
Luis Vazquez, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[2] Norwegian Univ Sci & Technol, Dept Math Sci, Trondheim, Norway
基金
瑞典研究理事会; 芬兰科学院;
关键词
35R11; 35K55; 35A01; 35B45; TUG-OF-WAR; MEAN-VALUE CHARACTERIZATION; VISCOSITY SOLUTIONS; ASYMPTOTIC-BEHAVIOR; DIRICHLET PROBLEM; HEAT-EQUATION;
D O I
10.1007/s00526-023-02475-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the evolution problem associated to the infinity fractional Laplacian introduced by Bjorland et al. (Adv Math 230(4-6):1859-1894, 2012) as the infinitesimal generator of a non-Brownian tug-of-war game. We first construct a class of viscosity solutions of the initial-value problem for bounded and uniformly continuous data. An important result is the equivalence of the nonlinear operator in higher dimensions with the one-dimensional fractional Laplacian when it is applied to radially symmetric and monotone functions. Thanks to this and a comparison theorem between classical and viscosity solutions, we are able to establish a global Harnack inequality that, in particular, explains the long-time behavior of the solutions.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] The obstacle problem for the infinity fractional laplacian
    Moreno Mérida L.
    Vidal R.E.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (1): : 7 - 15
  • [2] On asymptotic expansions for the fractional infinity Laplacian
    del Teso, Felix
    Endal, Jorgen
    Lewicka, Marta
    ASYMPTOTIC ANALYSIS, 2022, 127 (03) : 201 - 216
  • [3] AN INHOMOGENEOUS EVOLUTION EQUATION INVOLVING THE NORMALIZED INFINITY LAPLACIAN WITH A TRANSPORT TERM
    Liu, Fang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (06) : 2395 - 2421
  • [4] The Dirichlet problem for the fractional p-Laplacian evolution equation
    Luis Vazquez, Juan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 6038 - 6056
  • [5] Fractional p-Laplacian evolution equations
    Mazon, Jose M.
    Rossi, Julio D.
    Toledo, Julian
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (06): : 810 - 844
  • [6] On the behavior of least energy solutions of a fractional (p, q(p))-Laplacian problem as p goes to infinity
    Ercole, Grey
    Medeiros, Aldo H. S.
    Pereira, Gilberto A.
    ASYMPTOTIC ANALYSIS, 2021, 123 (3-4) : 237 - 262
  • [7] A HOLDER INFINITY LAPLACIAN
    Chambolle, Antonin
    Lindgren, Erik
    Monneau, Regis
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (03) : 799 - 835
  • [8] The fractional p-Laplacian evolution equation in RN in the sublinear case
    Vazquez, Juan Luis
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (04)
  • [9] AN ANISOTROPIC INFINITY LAPLACIAN OBTAINED AS THE LIMIT OF THE ANISOTROPIC (p, q)-LAPLACIAN
    Perez-Llanos, Mayte
    Rossi, Julio D.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (06) : 1057 - 1076
  • [10] LINEAR EVOLUTION EQUATION WITH FRACTIONAL LAPLACIAN AND SINGULAR POTENTIAL
    Pilarczyk, Dominika
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (03): : 953 - 967