High-Spatial-Resolution Strain Sensor Based on Rayleigh-Scattering-Enhanced SMF Using Direct UV Exposure

被引:12
作者
Du, Chao [1 ,2 ]
Fu, Cailing [1 ,2 ]
Li, Pengfei [1 ,2 ]
Meng, Yanjie [1 ,2 ]
Zhong, Huajian [1 ,2 ]
Du, Bin [1 ,2 ]
Guo, Kuikui [1 ,2 ]
Chen, Lin [1 ,2 ]
Wang, Yiping [1 ,2 ]
He, Jun [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong & Hong Kong Joint Res Ctr Opt Fiber Sens, Shenzhen Key Lab Photon Devices & Sensing Syst Int, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical fiber sensors; Strain; Fiber lasers; Optical fiber polarization; Measurement by laser beam; Spatial resolution; Rayleigh scattering; Distributed strain sensor; optical frequency domain reflectometer; UV exposure; FIBER; BACKSCATTERING; LASER;
D O I
10.1109/JLT.2022.3224311
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A high-spatial-resolution, i.e., 2.0 mm, strain sensor based on a Rayleigh-scattering-enhanced SMF, i.e., exposed SMF (E-SMF) with direct UV laser, was experimentally demonstrated. The enhancement of Rayleigh-scattering (RS) intensity could be tuned by adjusting the exposure parameters, i.e., distance between SMF and Phase mask, energy of UV laser and velocity of the SMF. A 1.0 m long E-SMF with a RS enhancement of 37.3 dB was obtained, where the exposure time was only 100 s. Compared with the un-exposed SMF (UE-SMF), the strain profiles of the E-SMF could be clearly demodulated without fluctuation at a spatial resolution of 2.0 mm using traditional cross-correlation algorithm when the applied strain was from 200 to 2600 mu e.
引用
收藏
页码:1566 / 1570
页数:5
相关论文
共 19 条
  • [1] Simultaneous Distributed Sensing on Multiple MgO-Doped High Scattering Fibers by Means of Scattering-Level Multiplexing
    Beisenova, Aidana
    Issatayeva, Aizhan
    Korganbayev, Sanzhar
    Molardi, Carlo
    Blanc, Wilfried
    Tosi, Daniele
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (13) : 3413 - 3421
  • [2] Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
    Ding, Zhenyang
    Wang, Chenhuan
    Liu, Kun
    Jiang, Junfeng
    Yang, Di
    Pan, Guanyi
    Pu, Zelin
    Liu, Tiegen
    [J]. SENSORS, 2018, 18 (04)
  • [3] Cryogenic Temperature Measurement Using Rayleigh Backscattering Spectra Shift by OFDR
    Du, Yang
    Liu, Tiegen
    Ding, Zhenyang
    Han, Qun
    Liu, Kun
    Jiang, Junfeng
    Chen, Qinnan
    Feng, Bowen
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (11) : 1150 - 1153
  • [4] Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers
    Fuertes, Victor
    Gregoire, Nicolas
    Labranche, Philippe
    Gagnon, Stephane
    Wang, Ruohui
    Ledemi, Yannick
    LaRochelle, Sophie
    Messaddeq, Younes
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter
    Kreger, Stephen T.
    Sang, Alex K.
    Gifford, Dawn K.
    Froggatt, Mark E.
    [J]. FIBER OPTIC SENSORS AND APPLICATIONS VI, 2009, 7316
  • [6] High-Spatial-Resolution Strain Sensor Based on Distance Compensation and Image Wavelet Denoising Method in OFDR
    Li, Pengfei
    Fu, Cailing
    Du, Bin
    He, Jun
    Zhong, Huajian
    Du, Chao
    Wang, Lei
    Wang, Yiping
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (19) : 6334 - 6339
  • [7] Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre
    Loranger, Sebastien
    Gagne, Mathieu
    Lambin-Iezzi, Victor
    Kashyap, Raman
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [8] Distributed optical fiber sensing: Review and perspective
    Lu, Ping
    Lalam, Nageswara
    Badar, Mudabbir
    Liu, Bo
    Chorpening, Benjamin T.
    Buric, Michael P.
    Ohodnicki, Paul R.
    [J]. APPLIED PHYSICS REVIEWS, 2019, 6 (04):
  • [9] Low-Loss Random Fiber Gratings Made With an fs-IR Laser for Distributed Fiber Sensing
    Lu, Ping
    Mihailov, Stephen J.
    Coulas, David
    Ding, Huimin
    Bao, Xiaoyi
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (18) : 4697 - 4702
  • [10] Shape Sensing Using Two Outer Cores of Multicore Fiber and Optical Frequency Domain Reflectometer
    Meng, Yanjie
    Fu, Cailing
    Du, Chao
    Chen, Lin
    Zhong, Huajian
    Li, Pengfei
    Xu, Baijie
    Du, Bin
    He, Jun
    Wang, Yiping
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (20) : 6624 - 6630