Harmonic Analysis Associated with the Jacobi-Dunkl Operator on (-π,π): Exotic Cases

被引:0
作者
Stempak, Krzysztof
机构
关键词
Differential-difference operator; Jacobi-Dunkl operator; Self-adjoint extension; Jacobi-Dunkl semigroup; Jacobi-Dunkl-Poisson semigroup; MAXIMAL OPERATORS; RIESZ TRANSFORMS; LAGUERRE;
D O I
10.1007/s11785-023-01343-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate some spectral properties of a second order differential-difference operator J(a,b) on L-2((-pi,pi), d mu(alpha,beta)), alpha, beta epsilon R, called the Jacobi-Dunkl operator of compact type. Using an idea of Hajmirzaahmad, in exotic cases, e.g. when at least one of the two parameters a, beta is <= -1, we construct exotic orthonormal bases that consist of eigenfunctions of J(alpha,beta). This allows one to consider natural self-adjoint exotic extensions of J(alpha,beta) and the corresponding exotic Jacobi-Dunkl and Jacobi-Dunkl-Poisson semigroups.
引用
收藏
页数:33
相关论文
共 20 条
[11]   Genuinely sharp heat kernel estimates on compact rank-one symmetric spaces, for Jacobi expansions, on a ball and on a simplex [J].
Nowak, Adam ;
Sjogren, Peter ;
Szarek, Tomasz Z. .
MATHEMATISCHE ANNALEN, 2021, 381 (3-4) :1455-1476
[12]   Maximal operators of exotic and non-exotic Laguerre and other semigroups associated with classical orthogonal expansions [J].
Nowak, Adam ;
Sjogren, Peter ;
Szarek, Tomasz Z. .
ADVANCES IN MATHEMATICS, 2017, 318 :307-354
[13]   Analysis Related to All Admissible Type Parameters in the Jacobi Setting [J].
Nowak, Adam ;
Sjogren, Peter ;
Szarek, Tomasz Z. .
CONSTRUCTIVE APPROXIMATION, 2015, 41 (02) :185-218
[14]   Sharp estimates of the Jacobi heat kernel [J].
Nowak, Adam ;
Sjogren, Peter .
STUDIA MATHEMATICA, 2013, 218 (03) :219-244
[15]   A symmetrized conjugacy scheme for orthogonal expansions [J].
Nowak, Adam ;
Stempak, Krzysztof .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (02) :427-443
[16]   Calderon-Zygmund Operators Related to Jacobi Expansions [J].
Nowak, Adam ;
Sjogren, Peter .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (04) :717-749
[17]  
Prudnikov A. P., 1986, Integrals and Series
[18]  
Stein E. M., 1970, Ann. of Math. Stud., V63
[19]   SPECTRAL PROPERTIES OF ORDINARY DIFFERENTIAL OPERATORS ADMITTING SPECIAL DECOMPOSITIONS [J].
Stempak, Krzysztof .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (05) :1961-1986
[20]  
Szego G., 1975, Orthogonal Polynomials, V4th