Probing many-body dynamics in a two-dimensional dipolar spin ensemble

被引:41
作者
Davis, E. J. [1 ]
Ye, B. [1 ]
Machado, F. [1 ,2 ]
Meynell, S. A. [3 ]
Wu, W. [1 ,2 ]
Mittiga, T. [1 ,2 ]
Schenken, W. [3 ]
Joos, M. [3 ]
Kobrin, B. [1 ,2 ]
Lyu, Y. [1 ]
Wang, Z. [1 ,2 ]
Bluvstein, D. [4 ]
Choi, S. [1 ]
Zu, C. [1 ,2 ,5 ]
Jayich, A. C. Bleszynski [3 ]
Yao, N. Y. [1 ,2 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Washington Univ, Dept Phys, St Louis, MO USA
基金
加拿大自然科学与工程研究理事会;
关键词
SPECTRAL DIFFUSION DECAY; DOUBLE-RESONANCE; QUANTUM; RELAXATION; COHERENCE; CENTERS;
D O I
10.1038/s41567-023-01944-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solid-state systems are established candidates to study models of many-body physics but have limited control and readout capabilities. Ensembles of defects in diamond may provide a solution for studying dipolar systems. The most direct approach for characterizing the quantum dynamics of a strongly interacting system is to measure the time evolution of its full many-body state. Despite the conceptual simplicity of this approach, it quickly becomes intractable as the system size grows. An alternate approach is to think of the many-body dynamics as generating noise, which can be measured by the decoherence of a probe qubit. Here we investigate what the decoherence dynamics of such a probe tells us about the many-body system. In particular, we utilize optically addressable probe spins to experimentally characterize both static and dynamical properties of strongly interacting magnetic dipoles. Our experimental platform consists of two types of spin defects in nitrogen delta-doped diamond: nitrogen-vacancy colour centres, which we use as probe spins, and a many-body ensemble of substitutional nitrogen impurities. We demonstrate that the many-body system's dimensionality, dynamics and disorder are naturally encoded in the probe spins' decoherence profile. Furthermore, we obtain direct control over the spectral properties of the many-body system, with potential applications in quantum sensing and simulation.
引用
收藏
页码:836 / +
页数:19
相关论文
共 67 条
[1]   Electron-spin phase relaxation of phosphorus donors in nuclear-spin-enriched silicon [J].
Abe, E ;
Itoh, KM ;
Isoya, J ;
Yamasaki, S .
PHYSICAL REVIEW B, 2004, 70 (03) :033204-1
[2]   Probing many-body states of ultracold atoms via noise correlations [J].
Altman, E ;
Demler, E ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 70 (01) :013603-1
[3]   EXCHANGE NARROWING IN PARAMAGNETIC RESONANCE [J].
ANDERSON, PW ;
WEISS, PR .
REVIEWS OF MODERN PHYSICS, 1953, 25 (01) :269-276
[4]   Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems [J].
Bar-Gill, N. ;
Pham, L. M. ;
Belthangady, C. ;
Le Sage, D. ;
Cappellaro, P. ;
Maze, J. R. ;
Lukin, M. D. ;
Yacoby, A. ;
Walsworth, R. .
NATURE COMMUNICATIONS, 2012, 3
[5]   Decoherence of ensembles of nitrogen-vacancy centers in diamond [J].
Bauch, Erik ;
Singh, Swati ;
Lee, Junghyun ;
Hart, Connor A. ;
Schloss, Jennifer M. ;
Turner, Matthew J. ;
Barry, John F. ;
Pham, Linh M. ;
Bar-Gill, Nir ;
Yelin, Susanne F. ;
Walsworth, Ronald L. .
PHYSICAL REVIEW B, 2020, 102 (13)
[6]   Dressed-State Resonant Coupling between Bright and Dark Spins in Diamond [J].
Belthangady, C. ;
Bar-Gill, N. ;
Pham, L. M. ;
Arai, K. ;
Le Sage, D. ;
Cappellaro, P. ;
Walsworth, R. L. .
PHYSICAL REVIEW LETTERS, 2013, 110 (15)
[7]  
Bruin A, 2015, PHYS REV B, V91
[8]   Dynamics and control of a quasi-one-dimensional spin system [J].
Cappellaro, P. ;
Ramanathan, C. ;
Cory, D. G. .
PHYSICAL REVIEW A, 2007, 76 (03)
[9]   ELECTRON-SPIN ECHO DECAY BEHAVIORS OF PHOSPHORUS DOPED SILICON [J].
CHIBA, M ;
HIRAI, A .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (03) :730-&
[10]   H-1 and F-19 multiple-quantum NMR dynamics in quasi-one-dimensional spin clusters in apatites [J].
Cho, G ;
Yesinowski, JP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (39) :15716-15725