InGaN nanowire array photocathode with high electron harvesting capability

被引:10
作者
Cao, Zhihao [1 ]
Liu, Lei [1 ]
Lu, Feifei [1 ]
Cheng, Hongchang [2 ]
Guo, Xin [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Dept Optoelect Technol, Nanjing 210094, Peoples R China
[2] Sci & Technol Low Light Level Night Vis Lab, Xian 710065, Peoples R China
基金
中国国家自然科学基金;
关键词
InGaN; Nanowire array; Photocathode; Photoemission; Electronic collection; ABSORPTION; DIODES;
D O I
10.1016/j.optmat.2023.113591
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the rise of III-V semiconductor materials, InGaN materials began to be widely concerned. Nanowire arrays have excellent light trapping ability and generate a large number of photogenerated electrons. However, the adjacent nanowires will absorb these electrons twice, so the quantum efficiency cannot perfectly measure the emission performance of the nanowire array photocathode. We introduce the collection efficiency to evaluate the photoemission performance. It is based on this background that we study the photoemission performance of InGaN nanowire array under the assistance of height, incident light Angle and applied electric field. Finite-difference time-domain (FDTD) method is used to compare the quantum efficiency and collection efficiency of InGaN nanowire. We find that when the height of the nanowire is 600 nm, the angle of incident light is 65 degrees, and the electric field strength is 0.6V/mu m, InGaN nanowire arrays have the highest collection efficiency, with the collection efficiency up to 34% and the collection ratio up to 71%. The collection efficiency is 66% higher than that without external electric field. Therefore, the research in this paper can provide a theoretical reference for the preparation and performance improvement of InGaN nanowire array photocathode.
引用
收藏
页数:8
相关论文
共 24 条
  • [1] The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films
    Bergin, Stephen M.
    Chen, Yu-Hui
    Rathmell, Aaron R.
    Charbonneau, Patrick
    Li, Zhi-Yuan
    Wiley, Benjamin J.
    [J]. NANOSCALE, 2012, 4 (06) : 1996 - 2004
  • [2] Black Phosphorous/Indium Selenide Photoconductive Detector for Visible and Near-Infrared Light with High Sensitivity
    Cao, Rui
    Wang, Hui-De
    Guo, Zhi-Nan
    Sang, David K.
    Zhang, Li-Yuan
    Xiao, Quan-Lan
    Zhang, Yu-Peng
    Fan, Dian-Yuan
    Li, Jian-Qing
    Zhang, Han
    [J]. ADVANCED OPTICAL MATERIALS, 2019, 7 (12)
  • [3] Cao Z., 2022, MATER RES EXPRESS
  • [4] Bandgap engineering of two-dimensional semiconductor materials
    Chaves, A.
    Azadani, J. G.
    Alsalman, Hussain
    da Costa, D. R.
    Frisenda, R.
    Chaves, A. J.
    Song, Seung Hyun
    Kim, Y. D.
    He, Daowei
    Zhou, Jiadong
    Castellanos-Gomez, A.
    Peeters, F. M.
    Liu, Zheng
    Hinkle, C. L.
    Oh, Sang-Hyun
    Ye, Peide D.
    Koester, Steven J.
    Lee, Young Hee
    Avouris, Ph.
    Wang, Xinran
    Low, Tony
    [J]. NPJ 2D MATERIALS AND APPLICATIONS, 2020, 4 (01)
  • [5] Djurisic AB, 1999, PHYS STATUS SOLIDI B, V216, P199, DOI 10.1002/(SICI)1521-3951(199911)216:1<199::AID-PSSB199>3.0.CO
  • [6] 2-X
  • [7] Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications
    Fang, Xing
    Zhao, C. Y.
    Bao, Hua
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 133 : 579 - 588
  • [8] Photoemission from advanced heterostructured AlxGa1-xAs/GaAs photocathodes under multilevel built-in electric field
    Feng, Cheng
    Zhang, Yijun
    Qian, Yunsheng
    Chang, Benkang
    Shi, Feng
    Jiao, Gangcheng
    Zou, Jijun
    [J]. OPTICS EXPRESS, 2015, 23 (15): : 19478 - 19488
  • [9] Gu L., 2015, HIGH POWER LASER PAR, V27, P183
  • [10] Infrared Absorption at 300 K in InGaN/GaN Disk-in-Nanowire Arrays Grown on (001) Silicon
    Hazari, Arnab
    Soibel, Alexander
    Gunapala, Sarath D.
    Bhattacharya, Pallab
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (20) : 1751 - 1754