Investigation of gas-solid flow characteristics in a novel internal fluidized bed combustor by experiment and CPFD simulation
被引:11
|
作者:
Ding, Hongliang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Ding, Hongliang
[1
,2
]
Ouyang, Ziqu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Inst Engn Thermophys, 11 Beisihuanxi Rd, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Ouyang, Ziqu
[1
,2
,4
]
Su, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Su, Kun
[1
,2
]
Zhang, Jinyang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Jiangsu Univ, Zhenjiang 212013, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Zhang, Jinyang
[1
,3
]
机构:
[1] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Jiangsu Univ, Zhenjiang 212013, Peoples R China
[4] Chinese Acad Sci, Inst Engn Thermophys, 11 Beisihuanxi Rd, Beijing 100190, Peoples R China
Based on the coal self-preheating combustion technology, this research proposed a novel internal flu-idized bed combustor (IFBC) with an internal separator for stable preheating of fuel. In order to verify fea-sibility and operation stability of IFBC, cold experiment, electrical capacitance tomography (ECT) and computational particle fluid dynamic (CPFD) simulation were performed in a laboratory-scale IFBC. The effects of superficial air velocity (Ug) and return valve structure on the operation and gas-solid flow characteristics were investigated. The results revealed that the CPFD prediction agreed well with the experiment values. The pressure balance curve presented an "800 shape distribution, and the particle vol-ume fraction (PVF) showed 'core-annular' distribution features. With the increase of Ug , the PVF in the standpipe increased, and the discharge pattern of the return valve changed from continuous discharge to intermittent discharge, and the solid circulation flux showed a trend of increasing first and then decreasing. With the decrease of the outlet opening of return valve (0), the gas-solid flow behavior in standpipe experienced a transition from gas leakage, stabilizing material seal, and blocking state. For Ug = 2 m/s, 0 = 50 %, an effective solid seal in the return valve was established and IFBC has a stable cir-culation and operation. (c) 2023 The Society of Powder Technology Japan. Published by Elsevier BV and The Society of Powder Technology Japan. All rights reserved.
机构:
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
Sahu, Akhilesh Kumar
Raghavan, Vasudevan
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
Raghavan, Vasudevan
Prasad, B. V. S. S. S.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Qiu, Guizhi
Ye, Jiamin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
Ye, Jiamin
Wang, Haigang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China