3D-printed sensor decorated with nanomaterials by CO2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection

被引:27
作者
Veloso, William B. [1 ]
Ataide, Vanessa N. [1 ]
Rocha, Diego P. [2 ]
Nogueira, Helton P. [1 ,3 ]
de Siervo, Abner [4 ]
Angnes, Lucio [1 ]
Munoz, Rodrigo A. A. [5 ]
Paixao, Thiago R. L. C. [1 ]
机构
[1] Univ Sao Paulo, Inst Chem, Dept Fundamental Chem, BR-05508000 Sao Paulo, SP, Brazil
[2] Fed Inst Parana, BR-85200000 Pitanga, PR, Brazil
[3] Univ Estadual Campinas, Inst Chem, Dept Phys Chem, BR-13083970 Campinas, SP, Brazil
[4] Univ Estadual Campinas, Inst Phys Gleb Wataghin, Appl Phys Dept, BR-13083859 Campinas, SP, Brazil
[5] Univ Fed Uberlandia, Inst Chem, BR-38400902 Uberlandia, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
3D-printed sensor; Conductive filament; Laser ablation; Electrochemical treatment; Tyrosine; GRAPHENE ELECTRODES; ASCORBIC-ACID; NANO-COMPOSITE; URIC-ACID; ACTIVATION; NANOCOMPOSITE; EPINEPHRINE; DEVICE;
D O I
10.1007/s00604-023-05648-8
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The combination of CO2 laser ablation and electrochemical surface treatments is demonstrated to improve the electrochemical performance of carbon black/polylactic acid (CB/PLA) 3D-printed electrodes through the growth of flower-like Na2O nanostructures on their surface. Scanning electron microscopy images revealed that the combination of treatments ablated the electrode's polymeric layer, exposing a porous surface where Na2O flower-like nanostructures were formed. The electrochemical performance of the fabricated electrodes was measured by the reversibility of the ferri/ferrocyanide redox couple presenting a significantly improved performance compared with electrodes treated by only one of the steps. Electrodes treated by the combined method also showed a better electrochemical response for tyrosine oxidation. These electrodes were used as a non-enzymatic tyrosine sensor for quantification in human urine samples. Two fortified urine samples were analyzed, and the recovery values were 106 and 109%. The LOD and LOQ for tyrosine determination were 0.25 and 0.83 mu mol L-1, respectively, demonstrating that the proposed devices are suitable sensors for analyses of biological samples, even at low analyte concentrations.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters [J].
Abdalla, A. ;
Hamzah, H. H. ;
Keattch, O. ;
Covill, D. ;
Patel, B. A. .
ELECTROCHIMICA ACTA, 2020, 354
[2]   3D-printing technologies for electrochemical applications [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) :2740-2755
[3]   Additively manufactured carbon/black-integrated polylactic acid 3Dprintedsensor for simultaneous quantification of uric acid and zinc in sweat [J].
Ataide, Vanessa N. ;
Rocha, Diego P. ;
de Siervo, Abner ;
Paixao, Thiago R. L. C. ;
Munoz, Rodrigo A. A. ;
Angnes, Lucio .
MICROCHIMICA ACTA, 2021, 188 (11)
[4]  
Bard A. J., 2001, Electrochemical Methods: Fundamentals and Applications, V2nd
[5]   3D Printed Graphene Electrodes' Electrochemical Activation [J].
Browne, Michelle P. ;
Novotny, Filip ;
Sofer, Zdenek ;
Pumera, Martin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (46) :40294-40301
[6]   Glassy carbon electrode activation - A way towards highly active, reproducible and stable electrode surface [J].
Bystron, Tomas ;
Sramkova, Eva ;
Dvorak, Filip ;
Bouzek, Karel .
ELECTROCHIMICA ACTA, 2019, 299 :963-970
[7]   Additive-manufactured (3D-printed) electrochemical sensors: A critical review [J].
Cardoso, Rafael M. ;
Kalinke, Cristiane ;
Rocha, Raquel G. ;
dos Santos, Pamyla L. ;
Rocha, Diego P. ;
Oliveira, Paulo R. ;
Janegitz, Bruno C. ;
Bonacin, Juliano A. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2020, 1118 :73-91
[8]   3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids [J].
Cardoso, Rafael M. ;
Silva, Pablo R. L. ;
Lima, Ana P. ;
Rocha, Diego P. ;
Oliveira, Thiago C. ;
do Prado, Thiago M. ;
Fava, Elson L. ;
Fatibello-Filho, Orlando ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 307
[9]   3D-printed flexible device combining sampling and detection of explosives [J].
Cardoso, Rafael M. ;
Castro, Silvia V. F. ;
Silva, Murilo N. T. ;
Lima, Ana P. ;
Santana, Mario H. P. ;
Nossol, Edson ;
Silva, Rodrigo A. B. ;
Richter, Eduardo M. ;
Paixao, Thiago R. L. C. ;
Munoz, Rodrigo A. A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 292 :308-313
[10]   Serum concentrations and urinary excretion of homogentisic acid and tyrosine in normal subjects [J].
Davison, Andrew S. ;
Milan, Anna M. ;
Hughes, Andrew T. ;
Dutton, John J. ;
Ranganath, Lakshminarayan R. .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2015, 53 (03) :E81-E83